Journal articles 2012
Documents
Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species
Pottorff M, Ehlers JD, Fatokun C, Roberts PA, and Close TJ (2012). Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species. BMC Genomics 13:234. (DOI:10.1186/1471-2164-13-234). (G6010.02/G7010.07.01).
Cowpea [Vigna unguiculata (L.) Walp] exhibits a considerable variation in leaf shape. Although cowpea is mostly utilized as a dry grain and animal fodder crop, cowpea leaves are also used as a high-protein pot herb in many countries of Africa.
This study has demonstrated how integrated genomic resources can be utilized for a candidate gene approach. Identification of genes which control leaf morphology may be utilized to improve the quality of cowpea leaves for vegetable and or forage markets as well as contribute to more fundamental research understanding the control of leaf shape in legumes.
Pottorff M, Ehlers JD, Fatokun C, Roberts PA, and Close TJ (2012). Leaf morphology in Cowpea [Vigna unguiculata (L.) Walp]: QTL analysis, physical mapping and identifying a candidate gene using synteny with model legume species. BMC Genomics 13:234. (DOI:10.1186/1471-2164-13-234). (G6010.02/G7010.07.01).
Cowpea [Vigna unguiculata (L.) Walp] exhibits a considerable variation in leaf shape. Although cowpea is mostly utilized as a dry grain and animal fodder crop, cowpea leaves are also used as a high-protein pot herb in many countries of Africa.
This study has demonstrated how integrated genomic resources can be utilized for a candidate gene approach. Identification of genes which control leaf morphology may be utilized to improve the quality of cowpea leaves for vegetable and or forage markets as well as contribute to more fundamental research understanding the control of leaf shape in legumes.
Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes
Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla-Garcia N, Gaur PM, Upadhyaya HD, Kavi Kishor PB, Shah TM, Cook DR and Varshney RK (2012). Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnology Journal published online: 17pp. (DOI: 10.1111/j.1467-7652.2012.00710.x)
Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla-Garcia N, Gaur PM, Upadhyaya HD, Kavi Kishor PB, Shah TM, Cook DR and Varshney RK (2012). Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnology Journal published online: 17pp. (DOI: 10.1111/j.1467-7652.2012.00710.x)
Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops.
Mir R, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney R (2012). Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics published online 21pp. Issn: 0040-5752. (DOI: 10.1007/s00122-012-1904-9).
Mir R, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney R (2012). Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics published online 21pp. Issn: 0040-5752. (DOI: 10.1007/s00122-012-1904-9).
Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru
Septiningsih EM, Sanchez DL, Singh N, Sendon PMD, Pamplona AM, Heuer S and Mackill DJ (2012). Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theoretical and Applied Genetics 124(5):867–874. (DOI 10.1007/s00122-011-1751-0). Not open access: view abstract
Septiningsih EM, Sanchez DL, Singh N, Sendon PMD, Pamplona AM, Heuer S and Mackill DJ (2012). Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theoretical and Applied Genetics 124(5):867–874. (DOI 10.1007/s00122-011-1751-0). Not open access: view abstract
Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions
Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T and Langridge P (2011). Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theoretical and Applied Genetics 124(4):697–711. (DOI 10.1007/s00122-011-1740-3). Not open access: view abstract
Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T and Langridge P (2011). Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theoretical and Applied Genetics 124(4):697–711. (DOI 10.1007/s00122-011-1740-3). Not open access: view abstract
Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea)
Pandey MK, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya HD, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Cook DR, Varshney RK (2012). Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breeding 131(1):139–147. Also published online in 2011. (DOI: 10.1111/j.1439-0523.2011.01911.x). View abstract online
Pandey MK, Gautami B, Jayakumar T, Sriswathi M, Upadhyaya HD, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Cook DR, Varshney RK (2012). Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breeding 131(1):139–147. Also published online in 2011. (DOI: 10.1111/j.1439-0523.2011.01911.x). View abstract online
High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development
Clark RT, Famoso AN, Zhao K, Shaff JE, Craft JE, Bustamante CD, McCouch SR, Aneshansley DJ, Kochian LV. 2013. High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environment Published online 3 September 2012. (DOI: 10.1111/j.1365-3040.2012.02587.x). Also printed in 2013. (G7010.03.01). Not open access: view abstract
Clark RT, Famoso AN, Zhao K, Shaff JE, Craft JE, Bustamante CD, McCouch SR, Aneshansley DJ, Kochian LV. 2013. High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environment Published online 3 September 2012. (DOI: 10.1111/j.1365-3040.2012.02587.x). Also printed in 2013. (G7010.03.01). Not open access: view abstract
Gray association grade analysis of physiological traits with yield of wheat under different water regimes
Shi W, Chang X, Jing R (2012). Gray association grade analysis of physiological traits with yield of wheat under different water regimes. Journal of Triticeae Crops 32(4):653–659. (G7010.02.01). Article in Chinese with abstract in English. Not open access: view online
The purpose of the present research is to reveal the variation of canopy temperature and photosynthetic characteristics and their impact on wheat (Triticum aestivum L.) yield under drought stress. A set of introgression BC3F5 lines (ILs) generated from repeated backcross [(Lumai 14 X Jinmai 47) X Lumai 14] were used as the plant materials. The donor parent Jinmai 47 was a drought tolerant cultivar, the recurrent parent Lumai 14 as a high yield potential cultivar under well-watered condition.
Shi W, Chang X, Jing R (2012). Gray association grade analysis of physiological traits with yield of wheat under different water regimes. Journal of Triticeae Crops 32(4):653–659. (G7010.02.01). Article in Chinese with abstract in English. Not open access: view online
The purpose of the present research is to reveal the variation of canopy temperature and photosynthetic characteristics and their impact on wheat (Triticum aestivum L.) yield under drought stress. A set of introgression BC3F5 lines (ILs) generated from repeated backcross [(Lumai 14 X Jinmai 47) X Lumai 14] were used as the plant materials. The donor parent Jinmai 47 was a drought tolerant cultivar, the recurrent parent Lumai 14 as a high yield potential cultivar under well-watered condition.
Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection
Guimarães PM, Brasileiro ACM, Morgante CV, Martins ACQ, Pappas G, Silva OB, Togawa R, Leal-Bertioli SCM, Araujo ACG, Moretzsohn MC and Bertioli DJ (2012). Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genomics 13:387 (DOI: 10.1186/1471-2164-13-387). (G6010.01)
Abstract: Background Cultivated peanut (Arachis hypogaea) is one of the most widely grown grain legumes in the world, being valued for its high protein and unsaturated oil contents. Worldwide, the major constraints to peanut production are drought and fungal diseases. Wild Arachis species, which are exclusively South American in origin, have high genetic diversity and have been selected during evolution in a range of environments and biotic stresses, constituting a rich source of allele diversity. Arachis stenosperma harbors resistances to a number of pests, including fungal diseases, whilst A. duranensis has shown improved tolerance to water limited stress. In this study, these species were used for the creation of an extensive databank of wild Arachis transcripts under stress which will constitute a rich source for gene discovery and molecular markers development.
Results Transcriptome analysis of cDNA collections from A. stenosperma challenged with Cercosporidium personatum (Berk. and M.A. Curtis) Deighton, and A. duranensis submitted to gradual water limited stress was conducted using 454 GS FLX Titanium generating a total of 7.4 x 105 raw sequence reads covering 211 Mbp of both genomes. High quality reads were assembled to 7,723 contigs for A. stenosperma and 12,792 for A. duranensis and functional annotation indicated that 95% of the contigs in both species could be appointed to GO annotation categories. A number of transcription factors families and defense related genes were identified in both species. Additionally, the expression of five A. stenosperma Resistance Gene Analogs (RGAs) and four retrotransposon (FIDEL-related) sequences were analyzed by qRT-PCR. This data set was used to design a total of 2,325 EST-SSRs, of which a subset of 584 amplified in both species and 214 were shown to be polymorphic using ePCR.
Conclusions This study comprises one of the largest unigene dataset for wild Arachis species and will help to elucidate genes involved in responses to biological processes such as fungal diseases and water limited stress. Moreover, it will also facilitate basic and applied research on the genetics of peanut through the development of new molecular markers and the study of adaptive variation across the genus.
Guimarães PM, Brasileiro ACM, Morgante CV, Martins ACQ, Pappas G, Silva OB, Togawa R, Leal-Bertioli SCM, Araujo ACG, Moretzsohn MC and Bertioli DJ (2012). Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genomics 13:387 (DOI: 10.1186/1471-2164-13-387). (G6010.01)
Abstract: Background Cultivated peanut (Arachis hypogaea) is one of the most widely grown grain legumes in the world, being valued for its high protein and unsaturated oil contents. Worldwide, the major constraints to peanut production are drought and fungal diseases. Wild Arachis species, which are exclusively South American in origin, have high genetic diversity and have been selected during evolution in a range of environments and biotic stresses, constituting a rich source of allele diversity. Arachis stenosperma harbors resistances to a number of pests, including fungal diseases, whilst A. duranensis has shown improved tolerance to water limited stress. In this study, these species were used for the creation of an extensive databank of wild Arachis transcripts under stress which will constitute a rich source for gene discovery and molecular markers development.
Results Transcriptome analysis of cDNA collections from A. stenosperma challenged with Cercosporidium personatum (Berk. and M.A. Curtis) Deighton, and A. duranensis submitted to gradual water limited stress was conducted using 454 GS FLX Titanium generating a total of 7.4 x 105 raw sequence reads covering 211 Mbp of both genomes. High quality reads were assembled to 7,723 contigs for A. stenosperma and 12,792 for A. duranensis and functional annotation indicated that 95% of the contigs in both species could be appointed to GO annotation categories. A number of transcription factors families and defense related genes were identified in both species. Additionally, the expression of five A. stenosperma Resistance Gene Analogs (RGAs) and four retrotransposon (FIDEL-related) sequences were analyzed by qRT-PCR. This data set was used to design a total of 2,325 EST-SSRs, of which a subset of 584 amplified in both species and 214 were shown to be polymorphic using ePCR.
Conclusions This study comprises one of the largest unigene dataset for wild Arachis species and will help to elucidate genes involved in responses to biological processes such as fungal diseases and water limited stress. Moreover, it will also facilitate basic and applied research on the genetics of peanut through the development of new molecular markers and the study of adaptive variation across the genus.
Getting the most out of sorghum low-input field trials in West Africa using spatial adjustment
Leiser WL, Rattunde HF, Piepho HP and Parzies HK (2012). Getting the most out of sorghum low-input field trials in West Africa using spatial adjustment. Journal of Agronomy and Crop Science, 198(5):349–359. (DOI: 10.1111/j.1439-037X.2012.00529.x). (G7010.03.03). Not open access: view abstract
Leiser WL, Rattunde HF, Piepho HP and Parzies HK (2012). Getting the most out of sorghum low-input field trials in West Africa using spatial adjustment. Journal of Agronomy and Crop Science, 198(5):349–359. (DOI: 10.1111/j.1439-037X.2012.00529.x). (G7010.03.03). Not open access: view abstract