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Summary

A set of 2486 single nucleotide polymorphisms (SNPs) were compiled in chickpea using four
approaches, namely (i) Solexa/lllumina sequencing (1409), (ii) amplicon sequencing of tenta-
tive orthologous genes (TOGs) (604), (iii) mining of expressed sequence tags (ESTs) (286) and
(iv) sequencing of candidate genes (187). Conversion of these SNPs to the cost-effective and
flexible throughput Competitive Allele Specific PCR (KASPar) assays generated successful
assays for 2005 SNPs. These marker assays have been designated as Chickpea KASPar Assay
Markers (CKAMs). Screening of 70 genotypes including 58 diverse chickpea accessions and
12 BC5F; lines showed 1341 CKAMs as being polymorphic. Genetic analysis of these data
clustered chickpea accessions based on geographical origin. Genotyping data generated for
671 CKAMs on the reference mapping population (Cicer arietinum ICC 4958 x Cicer reticula-
tum Pl 489777) were compiled with 317 unpublished TOG-SNPs and 396 published markers
for developing the genetic map. As a result, a second-generation genetic map comprising
1328 marker loci including novel 625 CKAMs, 314 TOG-SNPs and 389 published marker loci
with an average inter-marker distance of 0.59 cM was constructed. Detailed analyses of 1064
mapped loci of this second-generation chickpea genetic map showed a higher degree of synt-
eny with genome of Medicago truncatula, followed by Glycine max, Lotus japonicus and least
with Vigna unquiculata. Development of these cost-effective CKAMs for SNP genotyping will
be useful not only for genetics research and breeding applications in chickpea, but also for
utilizing genome information from other sequenced or model legumes.

Introduction

Among different marker systems, simple sequence repeats
(SSRs) and SNPs are the markers of choice for genetics and

Chickpea (Cicer arietinum) is the third most important legume
crop, a source of dietary protein and a beneficial agricultural
crop in the semi-arid regions of the world. The development of
sustainable high yielding varieties against persisting abiotic stres-
ses and biotic stresses is a prerequisite to meet the world hun-
ger. Molecular breeding strategies have been adopted to
improvise crop improvement programmes in several crops
including legumes such as soybean and common bean (see
Chamarthi et al.,, 2011). In case of chickpea, progress in the
area of implementation of markers in breeding programmes,
however, has been relatively slow. Availability of limited molec-
ular markers coupled with narrow genetic diversity has been
the major constraints to hamper development of genetic maps
and undertaking trait mapping studies. Marker genotyping cost
is another critical factor that determines adoption of markers in
breeding programmes as it involves genotyping of large number
of segregating lines.

© 2012 The Authors

plant breeding applications (Close et al, 2009; Gupta and
Varshney, 2000). Although the genotyping assays are expensive
and/or time consuming, the SSR markers have been an inevita-
ble choice till date in many crop species including chickpea
for large-scale characterization of germplasm collections (Up-
adhyaya et al., 2008), construction of genetic maps (Choudhary
et al., 2009; Nayak etal, 2010; Thudi etal, 2011, Winter
et al, 1999) and QTL identification (Aryamanesh et al., 2010;
Santra et al., 2000). On the other hand, SNPs are biallelic and
the most abundant genetic variations, which are evenly distrib-
uted in higher frequencies throughout the genome of most
plant species (Allen et al.,, 2011; Yan et al, 2009). As these
markers are amenable for automation and high-throughput
approach, the genotyping costs for SNPs can be lowered down.
As a result, SNP genotyping of large-scale segregating popula-
tions as well as germplasm collections becomes cost-effective
for developing high-density genetic maps, genome-wide
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association mapping, marker-assisted selection (MAS) and geno-
mic selection (GS) studies (see Varshney, 2010).

Depending on the sample size and number of markers to be
analysed, medium- to high-throughput assay platforms such as
BeadXpress and GoldenGate assays from lllumina Inc. (San
Diego, CA) with varying set of multiplexes (96, 384, 768 or
1536 SNPs per assay) are available. Such platforms have been
developed and used in several crop species such as barley
(Close et al., 2009), wheat (Akhunov et al., 2009), maize (Yan
et al., 2009), oil seed rape (Durstewitz et al., 2010), soybean
(Hyten et al., 2008), cowpea (Muchero et al., 2009), pea (Deul-
vot et al, 2010) and chickpea (Choudhary et al, 2012; R.V.
Penmetsa, N. Carraquilla-Garcia, A.D. Farmer, R.K. Varshney,
D.R. Cook, unpublished data). These platforms, however, are
cost-effective only when a minimum of 96, 384, 762 or 1536
SNPs are used for genotyping a large number of genotypes
(R.R. Mir, PJ. Hiremath, O. Riera-Lizarazu, R.K. Varshney,
unpublished results). In cases of molecular breeding applications
such as MAS where only few markers are required for genotyp-
ing a large number of segregating lines, lllumina-based geno-
typing assays do not seem to be cost-effective. In such cases,
Competitive Allele Specific PCR (KASPar) assay from KBiosciences
(Hertfordshire, UK) (http://www.kbioscience.co.uk) seems to be
an attractive marker genotyping assay (Allen et al., 2011; Cor-
tes et al, 2011). KASPar assay is a PCR-based novel homoge-
neous fluorescent SNP genotyping system. It is a very flexible
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assay and can be carried out on undefined set of markers (http://
www .kbioscience.co.uk/reagents/KASP_manual.pdf, http://www.
kbioscience.co.uk/download/KASP.swf).

This study has been undertaken in chickpea with the follow-
ing objectives: (i) to compile a large set of informative SNPs, (ii)
to develop KASPar assays for cost-effective SNP genotyping, (iii)
to analyse genetic diversity in the selected Cicer spp. accessions,
(iv) to develop a second-generation genetic map based on SNPs,
and (v) to determine the extent of genetic synteny of chickpea
with some closely related legume species.

Results
Large-scale identification of SNPs

With an objective of developing the cost-effective KASPar
assays for chickpea genetics and breeding applications, 2486
informative SNPs were compiled following four approaches
(Figure 1).

Solexa/lllumina sequencing

Solexa/lllumina 1G sequencing was carried out on total RNA
samples of four genotypes, namely ICC 4958, ICC 1882, ICC
506-EB and ICCC 37 of the cultivated species (C. arietinum),
and one genotype (Pl 489777) of wild species (Cicer reticula-
tum) (Hiremath et al., 2011). In total, approximately 96 million
Solexa/lllumina sequence reads were generated (Table 1). After

SNPs from allele-
specific re-sequencing
of candidate genes

SNPs based on legume
tentative orthologous
(TOGs) (Penmetsa et

SNPs from multiple
sequence
alignments of ESTs

Based on mapping onto chickpea transcriptome reference assembly (CaTA) of

al, unpublished) (Varshney et al., (Gujaria et al., 2011;
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Figure 1 A schematic representation to select the informative SNPs for conversion into KASPar assay and their utilization for genetic mapping and
germplasm analysis. A total of four approaches—(i) Solexa/lllumina sequencing, (i) tentative orthologous genes (TOGs), (iii) mining of expressed
sequence tags from public domain (iv) and allele-specific resequencing—were used to identify a set of 2486 nonredundant SNPs. Although efforts were
made to develop KASPar assays for all SNPs, successful assays were developed for 2005 SNPs. Screening of these assays on 58 Cicer spp. accessions
showed polymorphism with 1341 CKAMs, including 119 CKAMs showed polymorphism with JG 11 and ICC 4958, the parental lines of 12 BC3F, lines
analysed. Furthermore, genotyping data were generated for 651 CKAMs on 131 RiLs of the interspecific mapping populations, of which 625 CKAMs
were integrated into the chickpea genetic map.

© 2012 The Authors
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Table 1 A summary of identification of single nucleotide polymorphisms (SNPs) based on Solexa/lllumina sequencing

Average No. of Total number of SNPs (>3 read depth,
Genotype Treatment read length (bp) reads (million) frequency difference of >0.75 and <0.25)
PI 489777 - 36 26.3] 10 368
ICC 4958 Drought stress 36 15.6 586
ICC 1882 Drought stress 36 22.1]
ICC 506 EB Helicoverpa stress 36 5.2 4677
ICCC 37 Helicoverpa stress 36 26.8]

aligning these sequence reads with the chickpea transcriptome
assembly  (CaTA) comprising 103 215 tentative unique
sequences (TUSs) (Hiremath et al., 2011) using Alpheus pipeline
(Miller et al.,, 2008) and pair-wise comparison of parental
genotypes considering selection criteria such as read depth of
>3 and frequency difference of >0.75 and <0.25 (Azam et al.,
2012), a total of 15361 SNPs in 9517 TUSs were selected
(Table 1). By comparing the identified SNPs across the three
parental combinations, 14 454 unique SNPs were identified
from 9517 nonredundant TUSs. To select nonredundant SNPs,
all the 14 454 SNPs in 9517 TUSs were compared with already
available SNPs developed in other studies (Gujaria et al., 2011;
Nayak et al., 2010; R.V. Penmetsa, N. Carraquilla-Garcia, A.D.
Farmer, R.K. Varshney, D.R. Cook, unpublished results). As a
result, a final set of 1409 SNPs from 1409 TUSs was selected.

Mining of sanger ESTs

On the basis of cluster analysis of 27 259 Sanger expressed
sequence tags (ESTs), 9569 unigenes including 2431 contigs
and 7138 singletons were identified in an earlier study (Varsh-
ney etal, 2009). A set of 729 contigs having ESTs from at
least two genotypes and read depth of >5 was explored for
SNP selection. An SNP with high polymorphism information
content (PIC) value (=0.5) and having at least 50 bp window
on either sides was considered from each contig. Finally, a
nonredundant set of 286 SNPs from 286 TUSs were selected
(Figure 1).

Allele-specific sequencing of candidate genes

Allele resequencing of 220 genes on a set of 2-20 genotypes
representing nine Cicer species provided 1893 SNPs in our ear-
lier study (Gujaria et al.,, 2011). By considering the criteria of
selecting one SNP with higher PIC value from each gene and
50-bp region on both flanking side of the SNP, a total of 183
SNPs present in 183 genes were selected. In addition, four SNPs
coming from two drought-responsive genes (Nayak et al.,
2009) were also selected (Figure 1).

Allele-specific sequencing of TOGs

With a goal of identification of cross-species genetic markers,
allele-sequencing was conducted on ICC 4958 and Pl 489777
for a total of 1440 tentative orthologous genes (TOGs) (R.V.
Penmetsa, N. Carraquilla-Garcia, A.D. Farmer, R.K. Varshney,
D.R. Cook, unpublished data). On the basis of SNP analysis on
this data set, a GoldenGate assay was developed for 768 SNPs
including 733 SNPs from TOGs and 155 SNPs from other
sources. Genotyping of the reference mapping population with
this GoldenGate assay integrated a total of 450 SNPs including
429 TOG-SNPs onto the genetic map. On the basis of design-

© 2012 The Authors

able criteria for KASPar assays, a total of 604 TOG-SNPs includ-
ing 410 mapped and 194 unmapped SNPs were selected
(Figure 1).

In brief, a set of 2486 SNPs including 1409 SNPs from
Solexa/lllumina sequencing, 286 SNPs from mining Sanger ESTs,
187 SNPs from allele-specific sequencing of candidate genes
and 604 TOG-SNPs was assembled (Table S1). It is important to
mention here that except for the 187 SNPs from allele rese-
quencing of candidate genes and 604 SNPs from TOGs, the
assembled SNPs were not validated earlier. Therefore, the com-
piled SNPs can be considered as putative SNPs.

Development and validation of KASPar assay

The selected set of 2486 SNPs was used for developing KASPar
assays (Table S1). The developed KASPar assays have been des-
ignated as Chickpea KASPar Assay Markers (CKAMs). All 2486
CKAMs were used for validation on a panel of 70 genotypes
(Table S2). These genotypes include 55 lines/varieties of the cul-
tivated species (C. arietinum) from 11 countries, three acces-
sions from the wild species (C. reticulatum) and 12 BCsF, lines
generated after introgressing a genomic region containing QTLs
for several drought tolerance traits from ICC 4958 into JG 11
by using marker-assisted backcrossing approach (unpublished
results).

A total of 2005 (80.6%) CKAMs were validated of the
2486; of these, 1341 (66.8%) CKAMs were polymorphic
among 58 genotypes, 664 (33.1%) were monomorphic in
the genotypes tested, and 481 (19.4%) failed to generate a
useful amplification signal (Table S1, Figure 2). No attempt
was made to redesign the primer for failed CKAMs. A com-
parison of SNP predicted in silico (assembled) and alleles
called in the KASPar assays for the 2005 validated CKAMs
showed 100% consistency. The PIC values for the polymor-
phic CKAMs varied between 0.02 and 0.50 with an average
of 0.12 (Table S1).

Analysis of CKAMs on the parental genotypes of the map-
ping populations showed higher polymorphisms in interspecific
(C. arietinum x C. reticulatum) crosses than in intraspecific
(C. arietinum x C. arietinum)  crosses. Among interspecific
crosses, maximum number of polymorphisms (930 CKAMs) was
observed in the reference mapping population (ICC 4958 x P
489777) followed by crosses segregating for Helicoverpa resis-
tance, that is, ICC 3137 x IG 72953 (620 CKAMSs) and ICC
3137 x IG 72933 (276 CKAMs). In the case of the intraspecific
crosses, maximum polymorphism was identified between Arerti
and ICC 4958 (159 CKAMs), which represent parents of MABC
population for improvement of chickpea for drought tolerance.
The polymorphism status of CKAMs between different parental
combinations is given in Table 2.

Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd, Plant Biotechnology Journal, 1-17
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Figure 2 Snapshots showing SNP genotyping with KASPar assays. Different possible scenarios of SNP genotyping in germplasm collection (a—c) and
interspecific RIL mapping population (d—f) have been shown. Marker genotyping data generated for each genotype were used for allele calling using
the automatic allele calling option. Allelic discrimination (two alleles) for a particular marker in the genotypes examined has been shown on a scatter
plot with axes ‘X" and “Y". The snapshot (a) shows monomorphic pattern, that is, occurence of only one allele (blue spots) for CKAMO790 marker. In
the snapshot (b), polymorphism pattern, that is, occurence of two alleles (blue and red spots) for CKAM1175 marker in almost equal proportion in the
germplasm collection, has been shown. All germplasm accessions show homozygosity for the corresponding alleles, and one accession shows missing
data (pink spot). The snapshot (c) shows heterozygosity, that is, occurence of both alleles (green spots) for CKAM1802 marker in nine germplasm
accessions in addition to occurence of two alleles in homozygous condition in several accessions (blue and red spots) and three accessions with missing
data. The snapshot (d) shows occurence of one allele (red spots) in majority of RILs, except two RILs with the other allele (blue spots) and two RILs with
missing data (brown spots). Two clusters of about 50% of RILs each with one allele (blue and red spots) along with two RILs with missing data (brown
spots) have been shown in the snapshot (e). The snapshot (f) shows occurence of one allele (blue spots) in several RILs and missing data in majority of

the lines.

Genetic diversity analysis

Genotyping data obtained for all 1341 polymorphic CKAMs on
58 chickpea genotypes (Table S3) were used for assessing the
genetic diversity and understanding their genetic relationships.
Genetic dissimilarity between different pairs of genotypes varied
from 0.02 (ICC 7554 and ICC 3137) to a maximum of 0.74 (PI
48977 and IG 72933) with a mean of 0.37. On the basis of the
dissimilarity data and UPGMA method, a hierarchical cluster
analysis was performed on all the 58 genotypes using DARwin
V5.0.128 software (Perrier et al., 2003) (Figure 3). In the den-
drogram, the genotypes were grouped into two discrete major
clusters: the Cluster-I comprised only two wild species (C. retic-
ulatum) genotypes (IG 72953 and Pl 489777), and the Cluster-Il

comprised 56 genotypes of C. arietinum species, with an excep-
tion of one genotype IG 72933, belonging to C. reticulatum
species, that branches off sequentially at the base of the den-
drogram closer to the Cluster-I. In the Cluster-Il, few landraces
and cultivars from India (Annigeri, ICC 4593, ICCC 37, ICCV
05530), Ethiopia (Arerti), Mexico (ICC 12037) and lIsrael (ICC
7571) formed a clear outlying group, with the remaining 48
genotypes clustering into two main groups—the Cluster-lla and
the Cluster-llb. The Cluster-lla has 13 genotypes that mainly
belong to Afghanistan (2), Chile (1), Ethiopia (1), Iran (4), Portu-
gal (1), Turkey (1), Mexico (1) and former USSR (2). The Cluster-
Ilb is comprised of 35 genotypes, of which 33 belong exclusively
to India, one to Iran and one to Cyprus. Within the Cluster-llb,

© 2012 The Authors
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Table 2 CKAMs-based polymorphisms in some segregating populations of chickpea

Parental genotypes of
segregating population

Features of segregating populations

Marker data available for Polymorphic

both parental lines markers (%)

Interspecific mapping populations (Cicer arietinum x Cicer reticulatum)

ICC 4958 x Pl 489777 International reference mapping population 1900 930 (48.9)
ICC 3137 x IG 72953 Helicoverpa resistance 1744 620 (35.6)
ICC 3137 x IG 72933 Helicoverpa resistance 1839 276 (15.0)
Intraspecific mapping populations (C. arietinum x C. arietinum)
ICC 4958 x ICC 1882 Drought tolerance and root traits 1966 148 (7.5)
ICC 283 x ICC 8261 Drought tolerance and root traits 1960 58 (3.0)
ICC 6263 x ICC 1431 Salinity tolerance 1966 54 (2.7)
JG 62 x ICCV 05530 Fusarium wilt (FW), Ascochyta blight (AB), 1947 32 (1.6)
Botrytis grey mould (BGM)
Annigeri x ICC 4958 Root traits 1939 125 (6.4)
ICC 506-EB x Vijay Helicoverpa resistance 1969 27 (1.4)
Marker-assisted backcrossing (MABC) populations
Arerti x ICC 4958 Introgressing root trait QTL 1964 159 (8.1)
Ejere x ICC 4958 Introgressing root trait QTL 1967 140 (7.1)
ICC 97105 x ICC 4958 Introgressing root trait QTL 1981 147 (7.4)
ICCV 10 x ICC 4958 Introgressing root trait QTL 1982 136 (6.8)
ICCV 95423 x ICC 4958 Introgressing root trait QTL 1984 124 (6.2)
JG 11 x ICC 4958 Introgressing root trait QTL 1986 119 (6.1)
DCP 92-3 x ICC 4958 Introgressing root trait QTL 1982 137 (6.9)
KAK 2 x ICC 8261 Introgressing root trait QTL 1967 40 (2.0)
ICCV 92318 (Chefe) x ICC 8261 Introgressing root trait QTL 1971 37 (1.9)
C 214 x ILC 3279 Introgressing AB resistance 1963 53(2.7)
C 214 x WR 315 Introgressing FW resistance 1934 15 (0.8)
Phule G5 x Vishal Introgressing FW resistance 1954 27 (1.4)
Phule G12 x WR 315 Introgressing FW resistance 1980 26 (1.3)
G 74 x)G 14 Introgressing FW resistance 1959 51 (2.6)
JG 74 x WR 315 Introgressing FW resistance 1970 35(1.8)
Annigeri x WR 315 Introgressing FW resistance 1934 34 (1.8)
Annigeri x ICCV 10 Introgressing FW resistance 1935 29 (1.5)
Marker-assisted recurrent selection (MARS) mapping populations
JG 130 x ICCV 05107 Enriching drought tolerance alleles 1977 31(1.6)
ICCV 2 xJG 11 Enriching salinity tolerance alleles and early flowering 1973 30(1.5)
JG 11 x ICCV 04112 Enriching drought tolerance alleles 1975 27 (1.3)

SNP, single nucleotide polymorphisms.

ICC 1882 is separated from the rest of the genotypes. Overall,
the clustering pattern showed a distinctive grouping of geno-
types into separate clusters based on their geographical origin
and also based on species background (Figure 3a).

Relationship of BCsF, lines with the recurrent parent

A set of 12 BCsF, generated after introgressing a genomic
region containing QTLs for several drought tolerance-related
traits in JG 11 variety after maker-assisted backcrossing (MABC)
with ICC 4958 genotype were tested with all 2005 CKAMs to
assess the genome recovery of JG 11 parent in the MABC lines.
As a result, 108-117 markers showed similarity between the
given BCsF; line and JG 11 (Table S4). In brief, the tested BCsF,
lines showed genome recovery of JG 11 from 91% (BCsF,_170,
BC5F, 187, BC3F,_195) to 98% (BCsF, 120, BCsF,_248)
(Figure 3b). Furthermore, comparison of the BCsF, lines with
ICC 4958 showed the presence of allele of ICC 4958 in
the BC3F, lines for 10 CKAMs (CKAMO0017, CKAM1802,
CKAM1444, CKAM0042, CKAMO0043, CKAM1641, CKAM1963,
CKAM1933, CKAM1709 and CKAM1604). These markers seem

© 2012 The Authors

to be the potential mappable markers in the genomic region
transferred from ICC 4958 to JG 11.

Second-generation genetic map of chickpea

The reference mapping population (ICC 4958 x PI 489777) was
targeted for integrating CKAM s in the genetic map of chickpea.
In this context, a total of 930 CKAMs showed polymorphism
between the parental genotypes. The polymorphic CKAMs
include 503 Solexa/lllumina SNPs, 377 TOG-SNPs and 50 candi-
date gene sequencing-based SNPs. As genotyping data were
already available on the reference mapping population for all
371 TOG-SNPs via GoldenGate assay, only 118 markers repre-
senting all the linkage groups were selected for genotyping via
KASPar assays mainly for quality control. Therefore, genotyping
data were generated on the reference mapping population for
a total of 671 CKAMSs (503 Solexa/lllumina SNPs, 50 candidate
genes SNPs and 118 TOG-SNPs). High-quality genotyping data,
however were generated for 651 CKAMs (492 Solexa/lllumina
SNPs, 46 candidate genes SNPs and 112 TOG-SNPs). Analysis of
genotyping data showed Mendelian segregation ratio for a total

Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd, Plant Biotechnology Journal, 1-17
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Figure 3 Genetic relationships in germplasm and BCsF, lines. Hierarchical clustering of chickpea accessions was carried out based on UPGMA using
DARwin. The part (a) of the figure shows phylogenetic relationships among 58 germplasm lines based on allelic data for 1341 CKAMs. All the geno-
types analysed could be grouped into two main clusters (I and Il). The Cluster-I comprised two wild species genotypes (Cicer reticulatum) and Cluster- Il
comprises accessions mainly of Cicer arietinum species coming from 11 different countries. The part (b) of the figure shows genetic dissimilarity of 12

BC3F; lines with JG 11, the recurrent parent.

of 525 markers, and the remaining 126 (19.3%) markers exhib-
ited segregation distortion (Table S5) owing to skewed occur-
rence/distribution of one of the two parental alleles or high
percentage (60%) absence of allele data (Figure 2d,e,f).

As genotyping data were available for a total of 429
TOG-SNPs via GoldenGate assay (R.V. Penmetsa, N. Carraquilla-
Garcia, A.D. Farmer, R.K. Varshney, D.R. Cook, unpublished
data) and high-quality genotyping data were generated for 112
TOG-SNPs from this set via KASPar assay in the study, the
genotyping data for the remaining 317 TOG-SNPs generated via
GoldenGate assay were added to the data set of 651 CKAMs.
In addition, genotyping data were also assembled for (i) 61
genic molecular markers (GMMs) including 31 CGMMs, 15 CIS-
Rs and 15 ICCeMs (Guijaria et al, 2011), and (i) 335 legacy
markers including SSRs from different sources (H-series, ICCMs,
CAMs, SSRs-Frankfurt University, ISSRs), SNaPshot assays-based
SNPs, CAPS, DArTs (Thudi et al., 2011), and RAPDs. In sum-
mary, genotyping data were compiled for 1364 markers and
used for constructing the genetic map. The most likely order of
the markers was determined based on the verified position of

GMMs (Gujaria etal, 2011), TOG-SNPs (R.V. Penmetsa,
N. Carraquilla-Garcia, A.D. Farmer, R.K. Varshney, D.R. Cook,
unpublished data) and legacy markers (Nayak et al., 2010; Thu-
di etal., 2011). By using JonMap v 4.0 program (Van Ooijen
et al., 2006), a total of 1328 markers were mapped onto eight
linkage groups (CaLGO1-CalLGO08) as per the nomenclature
given in Thudi et al. (2011). The developed genetic map spans
a total of 788.6 cM distance with an average intermarker
distance of 0.59 cM (http://cmap.icrisat.ac.in/cmap/sm/cp/hire-
math/) (Figure 4). Details about different type of markers inte-
grated in this map are given in Table 3. The number of markers
per linkage group varied from 107 (CaLGO08) to 255 (CaLG04).
The total distance of individual linkage groups ranged from
70.5 (CaLG08) to 116.6 cM (CaLGO1).

Uneven distribution and clustering of markers was observed
along the length of all the chickpea linkage groups in this map.
Occurrence of both minor (3-5 cM) and major (>5 cM) gaps
between adjacent loci was observed (Table 4). A detailed obser-
vation revealed extensive clustering of CKAMs and TOG-SNPs
near the telomeric regions of CalLGO03, CalLG06, CalLG07 and

© 2012 The Authors
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Figure 4 A second-generation genetic map of chickpea. The genetic map based on reference mapping population (ICC 4958 x Pl 489777) is comprised of a
total of 1328 marker loci including newly developed 625 CKAMs, 314 tentative orthologous genes (TOGs)-SNPs (R.V. Penmetsa, N. Carraquilla-Garcia, A.D.
Farmer, R.K. Varshney, D.R. Cook, unpublished data) and 389 published marker loci in earlier studies. Eight different linkage groups are shown and designated as
CalGO01 to CaLGO8. For the visualization of marker names and orders, each LG has been split into 2-5 parts. For instance, four LGs, namely CaLG02, CaLGO7
and CaLGO08, are split into A and B parts; three LGs, namely CaLG04, CaLG05 and CaLG06, are splitinto A, B and C parts; the CaLGO1 is divided into A, B, C
and D parts; and CaLGO3 is divided into A, B, C, D and E parts. Map distances (cM) are presented on the left side of the bars, and corresponding markers are
listed on the right side of the bars. Each marker class is colour coded as follows: green, CKAMs; red, TOGs-SNPs; black, CGMMs; dark blue, CISRs; golden yellow,
ICCeMs; light blue, DAITs; and brown, legacy markers. High resolution genetic map is available at http:cmap.icrisat.ac.in/cmap/sm/cp/hiremathy/.
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TOG903841
TOG914910
TOG894921
TOG898370
TOG902834
TOG902901
TOG899640
TOG899062
TOG898533
CKAMO0568

TOG902919
TOG899538
TOG900871
TOG894408
TOG919211
TOG894314
TOG903717
TOG909974
TOG894415
TOG901904
TOG922092
TOG895029
TOG896103
TOG906599
TOG899728
TOG899657
TOG900222
TOG946804
TOG894248
TOG917794
TOG907144
TOG916452
TOG897973

82.1
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CalLGO07 (A) CalLGO07 (B) CalLGo8 (A) Cal.G08 (B)

0.0 —— AJ276275 60.4 CKAM1590 CISR066 CKAM1301
29+ |/ cpPbe770% 05 CKAM1089 CISR067 CKAML600
7.9 Y/ cpPbagos74 : CKAM1147 AAMCTTO2 CKAM1732
1331 ICCM0034 12 CKAM1605 CYSK CKAM1706
190 CaM0598 : \ | cCkAM1608 cyss CKAM1286
22.4 H5E11 61.3 CKAM1339 ICCM0072 CKAM1836
241 H1C22 617l TOG903027 cpPb172945 CKAM1547
24.9 MSU82 61.9 CKAMO706 MSU89 CKAM1519
256 H1l18 62.5 STMS25 CKAM1493 CKAML1667
26.8 AGL178 62.6 CKAMO0846 CKAM1018 CKAM1344
27.9 H1012 CKAM1485 CKAMO711 CKAMO779
29.4 ICCM0196 64.0 CKAM1499 CKAML1460 TOG904000
318 TA18 CKAMO0894 CKAML1124 TA3R-TA23L
34.0 TAAS8 CKAM1035 CKAM1611 TOGO19655
35.0 TOG903911 CKAM1178 |l ckam1483 TOGO01744
3524 ISSR8231 64.1 CKAM1734 | ckaM1523 CGMMO17
36.9 GAA44 CKAM1843 | ckam1245 TOGO19584
385 EST671 CKAM1468 CKAMO802 TOG902063
405 cpPb677011 64.2 CKAM1497 CKAM1773 PGMb
436 COAO 64.6 CKAM1845 CKAMO761 TOG895142
448 TA180 CKAMO0749  cxamis74 CKAM1903

TOG897306 64.9 CKAM1775 CKAM1782 CKAML1651

TOG908917 65.3 TOG918556 CKAM1288 CKAMO343
45.0 TOG916106 65.6 CKAMO0168 | ToGs9s871 TOG924405

TOG927781 66.9 TOG896040 CKAMO340 H1D24
45.4 ISSR8591 67.0 CKAMO0984 TOGB96172 H1C092
463 AJ489614 CKAM1123 CKAM1345 H5B04
483 CcPOX2 67.6 CKAM1546 ICCM0130a CKAM1410
493 H3H121 67.7 CKAM1200 CISR054 CKAM1740
495 H2E13 CKAM1265 CKAMO544 CKAM1685
496 TOG897618 CKAM1670 CKAMO0999 CKAM1393
505 ISSR8562 67.9 CKAM1977 CKAM1407 CKAMO430
51.0 STMS6 CKAM1202 CKAMO014 CKAM1397
517 ICCM0074a 69.0 ICCeM029 CKAMO709 CKAM1614
523 oPC11-1 69.5 TAAL-TA191R_291-284 CKAM1840 CGMMO28
53.2 CGMMO41 CKAM1630 Hac11 TA3
53.4 TOG894885 69.6 CKAM1539 CKAM1634 Ts12

cpPb677907 69.7 CKAM1555 CKAMO0932 ICCeMO54
53.6 TC87800 70.8 1 CKAM2005 CKAM1631
54.0 AJ276270 71.6 1 CKAM1646 CKAML750
54.6 FIS-1 71.8 1 CKAMO0935 u71
55.2 ICCM0074b 71.9 1 ICCMO0065b X60755
555 CGMMO04 73.21 OPA14-1 CKAM1772

CKAM1990 79.0 TOG896873 CKAMO342
56.6 CKAM1058 TOG901547 CKAMO856

CKAMO795 793 TOG905278 CKAMO0900
S7.1 CKAMO842 s16] W TA4L-TAL199R-3 300 CKAM1512

CKAMO366 87.5 1 CKAM1550 CKAM1871
57.2 CKAM1960 92.0 OPS13-3 CKAM1402

CKAM1543 93.7 CKAMO166 CKAM1743

CKAMO0460 106.9 ISSR8902 CKAM1461
57.6 CKAMO854 11217 ISSR8401 CKAM1978

CKAM1529 CKAM1456

CKAM1498 CKAM1908
57.7 CKAM1828 TOG902768

CKAM1748 FENR
58.3 TOG908268 Ts45

TOG905371 CKAM1889

CKAM1181 TOG919502

CKAM1603 OPQ11-2
58.9 CKAMO0837 CKAM0229

CKAM1662 CKAM1854

CKAMO0910 CKAM1890
59.0 CKAM1303 TOG903898
59.2 TOG46834 CKAM1727

TOG900261 CKAMO918
59.3 cpPb675317 CKAMO730
59.4 TOG905443 3561 CKAML159

CKAM1304 36.11 TOG897619
59.6 CKAMO0610

TOG899683
59.7 CKAM1073

Figure 4d (Continued)

CalLGO8 (Figure 4). In the case of CalLGO1, CalLG02, CalLG04
and CalLGO05, more CKAMs were clustered near the subtelomeric
regions.

Comparison of the developed genetic map with other
chickpea maps

The developed genetic map with 1328 marker loci was com-
pared with the 1291 loci genetic map (Thudi et al., 2011) and
300 loci transcript map of Gujaria et al. (2011). The details of
comparison of these maps are available at http://cmap.icri-

sat.ac.in/cmap/sm/cp/hiremath/.  These comparisons reflect a
greater congruency in terms of grouping of markers into spe-
cific linkage groups. A few exceptions were also observed. For
instance, TA4L-TA199R-3_300 and TA4L-TA191R_291-284 loci
were mapped on LG04 by Thudi et al. (2011) and on LGO6 by
Gujaria et al. (2011); these loci have been assigned to CaLG07
in the present map. Similarly, the marker loci TA5L-TS38R-
1_470 and TAS5L-TS129R_208 that were present on LG0O5 and
LGO8 of genetic maps developed by Thudi et al. (2011) and
Gujaria et al. (2011), respectively, could not be assigned to any

© 2012 The Authors
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Table 3 Distribution of markers on the second-generation linkage map of chickpea

Chickpea linkage group

Total markers

Marker type Total markers used CalGO1 CalG02 CalG0O3 (CalG04 CalGO5 CalGO6 CalG07 CalLG08 mapped
CKAMs 651 52 81 57 132 90 86 59 68 625
TOG-SNPs 317 56 29 16 67 58 56 19 13 314
Published marker loci
GMMs
CGMMs 32 4 10 6 3 2 2 2 31
CISRs 15 2 - - 4 4 - 3 15
ICCeMs 15 2 2 2 1 1 1 1 12
Legacy markers
H-series 44 4 7 6 5 7 5 6 4 44
ICCMs 46 3 4 9 10 7 6 5 46
CAMs 10 1 - 1 1 2 4 1 - 10
SSRs 93 14 " 16 14 14 10 9 5 93
ISSRs 26 8 8 - 2 2 1 5 - 26
SNaPshot assay-based SNPs 79 8 8 18 12 8 8 10 7 79
CAPS 13 - 1 2 2 1 - - 10
DArTs 19 1 - 2 5 2 5 1 19
RAPD 4 1 - - - - - 2 1 4
Total no. of markers 1364 156 161 136 255 203 186 124 107 1328
Total distance (cM) 116.6 92.94 101.8 92.5 95.6 106.6 112.1 70.5 788.6
Average intermarker distance (cM) 0.75 0.58 0.75 0.36 0.47 0.57 0.90 0.66 0.59

SNP, single nucleotide polymorphisms; SSR, simple sequence repeats; TOG, tentative orthologous genes.

Table 4 Distribution of marker clusters on the second-generation linkage map of chickpea

Linkage No. of Length Intermarker No. of Genetic mapping position and number of markers
group (LG) markers (cM) distance clusters (in parenthesis) in clusters observed

CalLGo1 156 116.6 0.75 3 23 (8), 39 (5), 61 (6

CalLG02 161 92.94 0.58 7 17 (6), 41 (6), 53 (5), 56 (6), 57 (8), 71 (7), 72 (8)
CalLGO3 136 101.8 0.75 1 35 (8)

CalLGo4 255 92.5 0.36 5 52 (8), 53 (19), 54 (14), 60 (7), 30 (11)

CalLGO05 203 95.6 0.47 5 53 (7), 58 (7), 69 (10), 70 (15), 91 (6)

CalLGo6 186 106.6 0.57 4 3(7), 10 (15), 19 (20), 82 (12)

CalLGo7 124 112.1 0.90 2 57 (11), 64 (12)

CalLGo8 107 70.5 0.66 2 8(8), 38 (7)

Total 1328 788.6 5.04 29

Average 166 98.58 0.63 3.6

linkage group in this genetic map. Apart from these shifts in
marker locations, no other discrepancy was observed.

Genome relationships of chickpea with closely related
legume species

We combined both the genetic map position information for
chickpea loci and genome sequence information of closely
related species of different clades to evaluate the degree of
synteny between genomes of chickpea and other related
legume species. A set of 1064 of 1328 mapped loci for
which both genetic map positions and sequence information
were available were compared with genome assemblies of
Medicago truncatula (Mt 3.5), Lotus japonicus (Lj 2.5 pseudo-
molecules), soybean (Glycine max) (Glyma1l) and the genetic
map of cowpea (Vigna unguiculata, Muchero et al.,, 2009)
(Figure 5).

© 2012 The Authors

In the case of chickpea and Medicago, 555 unique chickpea
loci showed significant matches with 1558 genomic regions on
Medicago chromosome (Table 5). Most of the chickpea loci
have >2 matches in Medicago. About 111 chickpea loci from
CalLGO01 showed similarity with Mtchr02 genomic regions. Simi-
larly, loci from CalLGO02 showed maximum matches to Mtchr05,
followed by CalLGO03 with Mtchr07, CalLG04 with MtchrOT,
CalGO5 with MtChr03, CaLG06 with Mtchr04, CalLGO07 with
MtChr04, and CalGO08 with MtChr05. In brief, each linkage
group of chickpea showed considerable synteny with one or
more chromosomes of Medicago, although internal duplication
of DNA sequences/blocks was not observed (Figure 5a).

In the comparison of chickpea with soybean, 494 chickpea
unique loci matched 1798 short stretches distributed on differ-
ent chromosomes of soybean (Glymal assembly) (Figure 5b,
Table S6). Each chickpea marker locus showed similarity to

Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd, Plant Biotechnology Journal, 1-17
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Figure 5 Genome relationships of chickpea with closely related legume species. Homologous relationship of chickpea genome with four legume spe-
cies, that is, Medlicago truncatula (a), soybean (b), Lotus japonicus (c) and cowpea (d), has been shown by comparing sequence data of 1064 mapped

markers of chickpea with genome sequence of Medicago (Mt 3.5), L. japonicus (Lj 2.5 pseudomolecules), soybean (Glymal genome assembly) and

cowpea genetic map (Muchero et al., 2009). Maximum similarity was observed with Medicago (1558), followed with soybean genome (1798), Lotus
(438) and least with cowpea (55). The percentage of matches in each species is in congruence with their phylogenetic distances.

Table 5 Mapping of chickpea marker loci on Medicago chromosomes

Medicago truncatula chromosomes
Chickpea linkage ~ Number of chickpea

groups unique loci MtChr01 MtChr02 ~ MtChr03 ~ MtChr04  MtChr05  MtChrO6 ~ MtChr07  MtChr08  MtChr0  Total
CalGo01 69 9 111 18 16 22 9 19 8 15 227
CalG02 61 7 9 10 14 920 23 12 8 7 180
CalGo03 62 12 25 30 20 41 15 99 26 12 280
CalLG04 95 104 1 7 24 12 1M 9 10 19 197
CalGo05 93 1" 3 129 13 14 5 9 13 19 216
CalLG06 76 6 5 8 87 39 " " 51 9 227
CalLGo7 46 1 7 5 54 8 3 2 1 1 92
CalLG08 53 4 2 3 4 99 6 14 1 6 139
Total 555 154 163 210 232 325 83 175 128 88 1558

*The numbers shown in bold represent the highest matches between chickpea and Medicago.

© 2012 The Authors
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approximately 3-4 regions on Glyma1. This reflects the number
of matches one would expect to see based on the one round
of whole genome duplication in soybean. Only 267 unique
chickpea loci matched with 438 regions on Lotus (Table S7, Fig-
ure 5¢). In the case of cowpea in which genetic map was used
for the comparison, least matches were observed between
chickpea and cowpea genomes. Only 50 unique chickpea loci
showed synteny with 55 loci of cowpea map (Table S8,
Figure 5d).

Discussion
Cost-effective KASPar assays for SNP genotyping

Until recently, SSR markers were the commonly used markers
for chickpea genetics research and breeding applications
(Upadhyaya et al., 2011). Nevertheless, in some cases, genetic
maps have also been developed using DArTs (Thudi et al.,
2011), CISRs (Gujaria et al., 2011) and SNPs/CAPs (Choudhary
et al., 2012; Guijaria et al., 2011; Nayak et al., 2010). With the
availability of whole genome or EST sequences in many crop
species, the use of SNP markers has been proven attractive for
high-throughput use in molecular breeding (Rafalski, 2002;
Varshney, 2010). High-throughput SNP genotyping platforms
such as lllumina’s GoldenGate or Infinium assays are being used
for large-scale SNP genotyping. While the high-throughput SNP
genotyping platforms are very useful for rapid genotyping of
mapping population or germplasm collections, they are not
generally economical for projects such as in silico SNP valida-
tion, gene-specific SNP assays, marker saturation in the regions
of interest and marker application projects that utilizes defined
set/panel of smaller number of SNP markers on varying number
of genotypes. In such cases, SNP genotyping technologies such
as arrayed primer extension reaction (APEX) (Podder et al.,
2008), dynamic allele-specific hybridization (DASH) (Podder
et al., 2008), molecular beacons (Mhlanga and Malmberg,
2001), primer extension followed by MALDI-TOF (alternative to
Sequenom’s assays) (Sauer etal., 2000) and KASPar assay
(http://www kbioscience.co.uk/reagents/KASP.html) have been
developed. While choosing a particular SNP genotyping plat-
form, several features such as the reproducibility, accuracy,
capability of multiplexing, the level of throughput, time con-
sumption and cost (considering both the equipments required
and the cost per genotype) need to be considered. As molecu-
lar breeding applications, generally, require screening of large
populations with a few markers, this study developed cost-
effective KASPar marker assays for SNP genotyping in chickpea.

A total of 2486 SNPs were assembled from different sources
for developing KASPar assays. KASPar assays developed for
chickpea have been referred as CKAMs. Genotyping of these
2486 CKAMs on a panel of 70 genotypes provided a validated
set of 2005 CKAMSs. This includes KASPar assays for 539 TOG-
SNPs that were initially assayed on GoldenGate assays. Conver-
sion of these TOG-SNPs into KASPar assay will facilitate use of
TOG-SNPs in chickpea genetics and breeding application.

To compare the success rate of converting putative SNPs into
successful and informative KASPar assays, amplification and
polymorphism statistics were checked across the four sets of
SNPs. The set of markers that gave higher rate of failures were
those SNPs identified from alignments of Sanger ESTs (172 SNP
markers, i.e. 60% of a total of 286). The possible reasons could
be attributed primarily to (i) SNPs were mined from the ESTs

© 2012 The Authors
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with sequencing artefacts, (i) frequency of one of two alleles
for a given SNP is very low in the EST data set, and (iii) all the
genotypes for which EST-based mining approach provided SNPs
were not included in the genotype panel used in the current
study (Varshney et al., 2009). The remaining number of markers
that could not be validated include 222 (15.7% of total of
1409) from Alpheus pipeline predicted SNPs, 65 SNPs (10.7%
out of 604) from TOG-SNPs and 22 SNPs (11.7% out of 187)
from allele resequencing data. Overall, the KASPar assay has
shown 81% validation success rate in our study. Comparison of
costs and time involved in genotyping the SNPs via KASPar
assays and GoldenGate assays for the same set of SNPs in this
study, showed superiority of KASPar assays over GoldenGate
assays, especially when limited number of SNPs (<500) are
genotyped with <100 lines.

The PIC values of validated CKAMs varied from 0.02 to 0.50
with an average of 0.12. Low range of PIC value of CKAMs is
not unexpected as genetic variation in the chickpea gene pool
is limited (Nayak et al, 2010; Thudi etal, 2011). Also, this
study identifies polymorphic markers (15-930) for different
mapping populations segregating for drought, salinity, Fusarium
wilt, Ascochyta blight, etc. It, therefore, provides opportunities
for mapping resistance to biotic and tolerance to abiotic stres-
ses in chickpea.

Diversity analysis and molecular breeding applications

This study demonstrates the suitability of KASPar assays for SNP
genotyping for understanding the relationships in the germplasm
collection as well as for molecular breeding applications. Despite
using a wide diverse collection of genotypes with all 2005
CKAMs, an overall success rate of 81% was achieved. The
genetic dissimilarity analysis of the germplasm accessions deter-
mines relationships of accessions with each other. The dendro-
gram developed based on genetic dissimilarity coefficient
depicted clear clustering of chickpea accessions into two main
clusters as per their geographical origin and species type of all 58
accessions (55 accessions of C. arietinum species and three
accessions of C. reticulatum species) analysed. Two accessions of
C. reticulatum are resolved as a separate group; however, 1G
72933, a C reticulatum, was found closer to C. arietinum.
Similar results were observed in an earlier genetic diversity study
using 513 SSR markers in which the IG 72933 genotype showed
40% similarity with the C. arietinum genotypes (Gudipati, 2007).
The Cluster-Il contained more geographically divergent material
of the C. arietinum species. As expected, accessions of all Indian
origin formed a separate clade, and the remaining accessions
from other countries were grouped into another clade (lla). Over-
all, these results are in general congruence with earlier studies
and indicate that the cluster topology is reliable.

The study also demonstrates the utility of CKAMs for assess-
ing the genome recovery of BCsF, lines. This study identified
five lines (BC5F,_120, BC5F,_170, BC5F,_187, BC5F,_195 and
BCsF,_268) with > 95% genome recovery of JG 11 in MABC
experiments. These lines may be used for multi-location field tri-
als for evaluating agronomic performance as well as for devel-
oping the near isogenic lines (NILs) for fine mapping the QTLs.

Second-generation genetic map of chickpea with more
anchoring points with other legume genomes

As expected, the number of polymorphic markers observed
between interspecific mapping populations is higher than intra-
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specific mapping populations. For instance, maximum number
of polymorphic markers is 930 (ICC 4958 x Pl 489777) in
interspecific crosses as compared with 159 (Arerti x ICC 4958)
in intraspecific crosses. As ICC 4958 x Pl 489777 population is
a reference mapping population, genotyping data were gener-
ated for the polymorphic CKAMs. Although genotyping data
were earlier generated for TOG-SNPs on the mapping popula-
tion via GoldenGate assays (R.V. Penmetsa, N. Carraquilla-
Garcia, A.D. Farmer, R.K. Varshney, D.R. Cook, unpublished
data), a set of 118 TOG-SNPs distributed on all eight LGs was
also targeted for generating genotyping data via KASPar assays
for quality control purpose. Comparison of high-quality data for
112 markers generated via KASPar assay with that of Golden-
Gate assay showed no discrepancy. After assembling genotyp-
ing data for 539 remaining CKAMs, 317 TOGs and 396 marker
loci from other sources (Gujaria etal., 2011; Nayak etal,
2010; R.V. Penmetsa, N. Carraquilla-Garcia, A.D. Farmer, R.K.
Varshney, D.R. Cook, unpublished data; Thudi etal, 2011),
genotyping data for a total of 1364 marker loci were consid-
ered for mapping. As a result, a comprehensive genetic map
comprising 1328 marker loci including 939 new marker loci
(625 CKAMs, 314 TOGs-SNPs) and 389 already published
mapped marker loci was developed. The second-generation
genetic map has a coverage of 788.6 ctM genetic distance. On
an average, each of the linkage group has 166 markers with an
average distance of 98.6 cM. This map has probably the highest
number of gene-based SNP markers (1088) mapped in chickpea
so far. Earlier to this map, Gujaria et al. (2011) developed a
transcript map with 126 gene-based markers and Choudhary
et al. (2012) developed a genetic map with 406 marker loci
including 177 gene-based markers. This map has approximately
eightfold gene-based markers as compared with the above-
mentioned studies. Another important feature with this genetic
map is the availability of cost-effective KASPar assays for the
mapped gene-based markers that can be used in any number
as well as on a variable number of lines. The quality and accu-
racy of the second-generation genetic map was evaluated by
comparing it with several genetic maps developed in earlier
studies (Gujaria et al.,, 2011; Nayak et al., 2010; Thudi et al.,
2011; Winter et al., 1999).

Clustering of two or more markers is a commonly occurring
phenomenon observed in several earlier genetic maps of chick-
pea (Nayak etal, 2010; Thudi etal, 2011, Winter etal.,
1999). Only CKAMs and TOG-based SNPs were clustered, which
constitute a large proportion of mapped markers [i.e. 625
CKAMs and 314 TOG-SNPs (939, 71%) of 1328] compared
with other marker types. This clustering may be attributed
mainly to random selection of markers from the closely spaced
regions of the genome that have undergone comparatively less
number of recombination events.

As a complement to the gene-based linkage map developed
in this study, we compared the sequences of these mapped loci
with genome assemblies/genetic maps of four legume species
(Medicago, Lotus, cowpea and soybean). Through the compar-
ative analysis, high conservation of synteny was observed
between chickpea and Medicago, whereas lowest level of synt-
eny conservation was observed between chickpea and cowpea.
Apparently, during the time of analysis genome sequence infor-
mation was not available for cowpea; hence, the analysis was
carried out by comparing with high-density linkage map devel-
oped by Muchero et al. (2009) available then. As a result, least
similarity was identified between chickpea and cowpea,

although chickpea is phylogenetically closer to cowpea than it
is to soybean, which shares the same common ancestor relative
to the ancestor of chickpea, Medicago and Lotus (Wojscie-
chowski et al., 2004). In all the other cases, high level of
similarity was observed (>70%, 1E-05) between sequences of
chickpea, and those of compared legumes, however, are often
punctuated or interrupted by chromosomal rearrangements,
thereby resulting in disruption of the linear order of the genes.
Subsequently, these variations (insertion, deletion, duplication
or rearrangements) form the basis for evolution of diverse
genomes. One or more chickpea loci match to a single locus
on Medicago chromosome, and similar pattern was observed
for the remaining three legume genomes with chickpea. This
may reflect segmental duplication events of chromosomal
stretches, or the mapped loci may correspond to paralogous
genes or same gene family members. Recent analysis of Medi-
cago genome has revealed that higher rates of mutations and
chromosomal rearrangements are known to have occurred
after the whole genome duplication event as compared with
other model legumes such as Glycine max and L. japonicus
(Young et al., 2011).

A number of chickpea unique loci matching to different
chromosomal regions on Mt 3.5, Glyma1, Lj 2.5 and cowpea
genetic map were identified. Of the 69 chickpea unique loci
that mapped on 227 regions distributed over eight chromo-
somes of Medicago, approximately 49% (i.e. 111 of 227)
matched to the MtChr02 and the remaining 116 were similar
to those on other chromosomes. Only 53 loci are in linear
order with Mtchr02 chromosomal regions, and the remaining
are in nonlinear positions. These findings support the earlier
reports by Choi et al. (2004), Nayak etal. (2010) and Zhu
et al. (2005) that one to one synteny does not hold true
between chickpea and the compared legume species, and the
synteny is restricted only to small genetic or genomic intervals
(Young etal, 2011). Our comparative results showed that
regions of CalLG02 and CalGO08 are strongly similar to Mt05,
which in turn shows high similarity to regions on GmoO1,
GmO02 and Gm11, which are consistent with the findings of
Young et al. (2011).

Conclusions

The study reports compilation of a large number of SNPs and
their conversion into cost-effective KASPar assays. A set of
2005 KASPar assays have been developed for accelerating
chickpea genetics research and breeding applications. Together
with these markers and recently developed SSR markers from
genomic libraries (Nayak et al., 2010) and BAC-end sequences
(Thudi et al.,, 2011), DArT markers (Thudi et al., 2011), CISR-
and CAPS-based CGMMs, >10 000 markers have become avail-
able in chickpea. The available marker resource should be able
to tackle the issue of narrow genetic diversity in the gene pool
as it is now possible to identify reasonable number of polymor-
phic markers in any given combination of cross. Genetic struc-
ture information gained on 58 chickpea accessions may be
useful in finding suitable parental combinations for developing
the new mapping populations segregating for different traits of
interest to chickpea breeders. Furthermore, a number of poly-
morphic markers were identified in many existing mapping pop-
ulations that can be used for developing genetic maps and
mapping of different agronomic traits. Many polymorphic mark-
ers were found to be common in many mapping populations,
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revealing their usefulness in providing bridging markers and for
comparing different chickpea maps. Developed genetic map is
the most enriched genetic map for gene-based markers. This
map should be useful not only in comparing different chickpea
genetic maps, but also in anchoring the physical map, currently
underway, as well as establishing more anchor points among
genomes of chickpea and other legume species.

Experimental procedure
Plant material and DNA extraction

A set of 70 different chickpea genotypes was used for valida-
tion of SNPs using KASPar assays. Details of these genotypes
are given in Table 2 and Table S2. Furthermore, a set of 131
recombinant inbred lines (RILs) derived from the cross between
ICC 4958 (C. arietinum) and Pl 489777 (C. reticulatum) was
used for genetic mapping.

Total genomic DNA of all the accessions was extracted from
leaves of two-week-old seedlings using high-throughput mini
DNA extraction protocol as mentioned in Cuc et al. (2008).
The quality and quantity of extracted DNAs were assessed on
0.8% agarose gel. The DNA was normalized to 5 ng/uL for
genotyping.

RNA Sequencing by Solexa/Illumina

Five different chickpea genotypes, viz. ICC 4958, ICC 1882, PI
489777, ICC 506 and ICCC 37, which are parents of different
mapping populations, were selected for RNA sequencing. Roots
of 22-day-old seedlings of ICC 4958 and ICC 1882 were sub-
jected to drought stresses, and subsequently total RNA was
extracted from both genotypes (Hiremath et al,, 2011). About
22-day-old leaves of ICC 506 and ICCC 37 were infested with
larvae of Helicoverpa armigera for a period of 5 days under
green house conditions (temperature of 28 + 5 °C and relative
humidity of >65%). After a brief infestation period, leaf sam-
ples from both genotypes were harvested for total RNA extrac-
tion. Total RNA was also extracted from 22-day-old root tissues
of Pl 489777, a wild species genotype. Subsequently, the total
RNA samples of all the genotypes were sent for Solexa/lllumina
sequencing at National Center for Genome Research (NCGR),
USA.

Development and analysis of KASPar assays

For developing the KASPar assays, 50 bp upstream and 50 bp
downstream flanking sequences around the variant position
(SNP) were selected (Table S1). Subsequently, KASPar assays for
the targeted SNPs were carried out at KBioscience, UK. Com-
plete details on principle and procedure of the assay are avail-
able at http:/Awww.kbioscience.co.uk/reagents/KASP_manual.
pdf and http://www.kbioscience.co.uk/download/KASP.swf. On
the basis of the fluorescence obtained, allele call data are
viewed graphically as a scatter plot for each marker assayed
using the SNPViewer. The consistency between the predicted
SNP and assayed ones was checked for each SNP marker.

Evaluation of polymorphism in chickpea accessions

The PIC refers to the value of a marker for detecting polymor-
phism within a given germplasm, depending on the number of
detectable alleles and the distribution of their frequency. In this
study, the PIC value of markers was calculated using the follow-
ing formula (Anderson et al., 1993):
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n
PIC=1->p}
i1
Where ‘n’ denotes the total number of alleles and ‘p’ refers

to the frequency of the ‘i"th allele at a genetic locus in different
genotypes.

Genetic diversity analysis

To evaluate the relationship between chickpea germplasm
accessions, SNP allele call data obtained for polymorphic mark-
ers were used for calculating both pair-wise genetic distance
and per cent dissimilarity matrix to construct a dendrogram
using DARwin V5.0.128 software (darwin.cirad.fr/darwin/
Home.php, Perrier et al., 2003). Cluster analysis was carried out
using the UPGMA method.

Genetic mapping

Genotyping data obtained using KASPar assays (CKAMs) were
compiled with the marker data for TOGs-SNPs (R.V. Penmetsa,
N. Carraquilla-Garcia, A.D. Farmer, R.K. Varshney, D.R. Cook,
unpublished data) and selected markers from all 8 linkage
groups mapped in earlier studies (Gujaria et al., 2011; Nayak
et al., 2010; Thudi et al., 2011). Segregation data for CKAMs
were tested for goodness of fit to the expected Mendelian ratio
of 1:1 using chi-square (3?) analysis (P < 0.05). All markers were
primarily divided into linkage groups using the ‘group’ com-
mand of mapmaker/exp 3.0 program (Lander et al., 1987). How-
ever, to construct high-quality genetic map, those markers
grouped by mapvaker were mapped using JonMap 4 program
(Stam, 1993; Van Ooijen, 2006; http://www.kyazma.
nl/index.php/mc.JoinMap/). ‘Kosambi’ mapping function was
used to calculate centimorgan (cM) distances. LOD values rang-
ing from 3 to 7 were considered for grouping and mapping.
MapCHarT (2.1v) was used for drawing maps (Voorips, 2002,
http://www.biometris.wur.nl/uk/Software/MapChart/).

Comparative mapping between chickpea and closer
legumes

Sequences data for mapped chickpea marker loci were queried
using BLAST against genomes of M. truncatula (Mt 3.5),
L. japonicus (Lj 2.5 pseudomolecules), soybean (Glymal genome
assembly) and cowpea genetic map (Muchero et al., 2009). All
the databases mentioned are available at http://comparative-
legumes.org/. Hits matching a minimum of 70% sequence
identity were retained for comparative study. Identification
of homologous blocks was performed using -ADHoRe v2.1
(Vandepoele et al., 2002). For the purpose of developing Circos
images, cM distances on the chickpea linkage groups were
scaled up by a factor of 250 000 to match similar base pair
lengths of the chromosomes of other legumes’ genomes.
Visualization of blocks was performed with Circos26. Scales
along the outer edge of the chickpea linkage groups show
actual cM distances, while the scale along the outer edge of
the Medicago chromosomes are in Mb.
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Table S1 Details on 2486 selected SNPs along with their SNP
variants, 50 bp upstream and downstream flanking sequence,
marker ID and PIC values.

Table S2 Details on 70 chickpea genotypes used for validation
of 2486 CKAMs.

Table S3 Details of genotyping data for 1341 CKAMs on 58
chickpea genotypes.

Table S4 Details of genotyping data for 119 CKAMs on 12
BCsF, lines along with parental genotypes ICC 4958 and JG 11.
Table S5 Details of genotyping data on 131 RiLs for 651
CKAMs and their respective Chi-square (x?) test values.

Table S6 Detailed results on comparison of mapped marker loci
of chickpea with soybean (Glycine max) genome.

Table S7 Detailed results on comparison of mapped marker loci
of chickpea with Lotus japonicus genome.

Table S8 Detailed results on comparison of mapped marker loci
of chickpea with cowpea genetic map.
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