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Summary
A set of 2486 single nucleotide polymorphisms (SNPs) were compiled in chickpea using four

approaches, namely (i) Solexa ⁄ Illumina sequencing (1409), (ii) amplicon sequencing of tenta-

tive orthologous genes (TOGs) (604), (iii) mining of expressed sequence tags (ESTs) (286) and

(iv) sequencing of candidate genes (187). Conversion of these SNPs to the cost-effective and

flexible throughput Competitive Allele Specific PCR (KASPar) assays generated successful

assays for 2005 SNPs. These marker assays have been designated as Chickpea KASPar Assay

Markers (CKAMs). Screening of 70 genotypes including 58 diverse chickpea accessions and

12 BC3F2 lines showed 1341 CKAMs as being polymorphic. Genetic analysis of these data

clustered chickpea accessions based on geographical origin. Genotyping data generated for

671 CKAMs on the reference mapping population (Cicer arietinum ICC 4958 · Cicer reticula-

tum PI 489777) were compiled with 317 unpublished TOG-SNPs and 396 published markers

for developing the genetic map. As a result, a second-generation genetic map comprising

1328 marker loci including novel 625 CKAMs, 314 TOG-SNPs and 389 published marker loci

with an average inter-marker distance of 0.59 cM was constructed. Detailed analyses of 1064

mapped loci of this second-generation chickpea genetic map showed a higher degree of synt-

eny with genome of Medicago truncatula, followed by Glycine max, Lotus japonicus and least

with Vigna unguiculata. Development of these cost-effective CKAMs for SNP genotyping will

be useful not only for genetics research and breeding applications in chickpea, but also for

utilizing genome information from other sequenced or model legumes.

Introduction

Chickpea (Cicer arietinum) is the third most important legume

crop, a source of dietary protein and a beneficial agricultural

crop in the semi-arid regions of the world. The development of

sustainable high yielding varieties against persisting abiotic stres-

ses and biotic stresses is a prerequisite to meet the world hun-

ger. Molecular breeding strategies have been adopted to

improvise crop improvement programmes in several crops

including legumes such as soybean and common bean (see

Chamarthi et al., 2011). In case of chickpea, progress in the

area of implementation of markers in breeding programmes,

however, has been relatively slow. Availability of limited molec-

ular markers coupled with narrow genetic diversity has been

the major constraints to hamper development of genetic maps

and undertaking trait mapping studies. Marker genotyping cost

is another critical factor that determines adoption of markers in

breeding programmes as it involves genotyping of large number

of segregating lines.

Among different marker systems, simple sequence repeats

(SSRs) and SNPs are the markers of choice for genetics and

plant breeding applications (Close et al., 2009; Gupta and

Varshney, 2000). Although the genotyping assays are expensive

and ⁄ or time consuming, the SSR markers have been an inevita-

ble choice till date in many crop species including chickpea

for large-scale characterization of germplasm collections (Up-

adhyaya et al., 2008), construction of genetic maps (Choudhary

et al., 2009; Nayak et al., 2010; Thudi et al., 2011; Winter

et al., 1999) and QTL identification (Aryamanesh et al., 2010;

Santra et al., 2000). On the other hand, SNPs are biallelic and

the most abundant genetic variations, which are evenly distrib-

uted in higher frequencies throughout the genome of most

plant species (Allen et al., 2011; Yan et al., 2009). As these

markers are amenable for automation and high-throughput

approach, the genotyping costs for SNPs can be lowered down.

As a result, SNP genotyping of large-scale segregating popula-

tions as well as germplasm collections becomes cost-effective

for developing high-density genetic maps, genome-wide
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association mapping, marker-assisted selection (MAS) and geno-

mic selection (GS) studies (see Varshney, 2010).

Depending on the sample size and number of markers to be

analysed, medium- to high-throughput assay platforms such as

BeadXpress and GoldenGate assays from Illumina Inc. (San

Diego, CA) with varying set of multiplexes (96, 384, 768 or

1536 SNPs per assay) are available. Such platforms have been

developed and used in several crop species such as barley

(Close et al., 2009), wheat (Akhunov et al., 2009), maize (Yan

et al., 2009), oil seed rape (Durstewitz et al., 2010), soybean

(Hyten et al., 2008), cowpea (Muchero et al., 2009), pea (Deul-

vot et al., 2010) and chickpea (Choudhary et al., 2012; R.V.

Penmetsa, N. Carraquilla-Garcia, A.D. Farmer, R.K. Varshney,

D.R. Cook, unpublished data). These platforms, however, are

cost-effective only when a minimum of 96, 384, 762 or 1536

SNPs are used for genotyping a large number of genotypes

(R.R. Mir, P.J. Hiremath, O. Riera-Lizarazu, R.K. Varshney,

unpublished results). In cases of molecular breeding applications

such as MAS where only few markers are required for genotyp-

ing a large number of segregating lines, Illumina-based geno-

typing assays do not seem to be cost-effective. In such cases,

Competitive Allele Specific PCR (KASPar) assay from KBiosciences

(Hertfordshire, UK) (http://www.kbioscience.co.uk) seems to be

an attractive marker genotyping assay (Allen et al., 2011; Cor-

tes et al., 2011). KASPar assay is a PCR-based novel homoge-

neous fluorescent SNP genotyping system. It is a very flexible

assay and can be carried out on undefined set of markers (http://

www.kbioscience.co.uk/reagents/KASP_manual.pdf, http://www.

kbioscience.co.uk/download/KASP.swf).

This study has been undertaken in chickpea with the follow-

ing objectives: (i) to compile a large set of informative SNPs, (ii)

to develop KASPar assays for cost-effective SNP genotyping, (iii)

to analyse genetic diversity in the selected Cicer spp. accessions,

(iv) to develop a second-generation genetic map based on SNPs,

and (v) to determine the extent of genetic synteny of chickpea

with some closely related legume species.

Results

Large-scale identification of SNPs

With an objective of developing the cost-effective KASPar

assays for chickpea genetics and breeding applications, 2486

informative SNPs were compiled following four approaches

(Figure 1).

Solexa ⁄ Illumina sequencing

Solexa ⁄ Illumina 1G sequencing was carried out on total RNA

samples of four genotypes, namely ICC 4958, ICC 1882, ICC

506-EB and ICCC 37 of the cultivated species (C. arietinum),

and one genotype (PI 489777) of wild species (Cicer reticula-

tum) (Hiremath et al., 2011). In total, approximately 96 million

Solexa ⁄ Illumina sequence reads were generated (Table 1). After

604 SNPs 187 SNPs
1409 SNPs

2486 non-redundant SNPs 

286 SNPs

ICC 4958  ICC 1882 PI 489777 ICC 506 EB ICCC 37 

10 368 SNPs 586 SNPs 4677 SNPs

Excluding redundant SNPs by comparing with SNPs developed from 
other studies  (Gujaria et al., 2011; Nayak et al., 2010; Penmetsa et al, 

unpublished)

SNPs based on legume 
tentative orthologous  
(TOGs) (Penmetsa et 

al, unpublished)

SNPs  from multiple 
sequence 

alignments of ESTs 
(Varshney et al., 

2009)

SNPs from allele-
specific re-sequencing 

of candidate genes 
(Gujaria et al., 2011; 
Nayak et al., 2009)

Based on mapping onto chickpea transcriptome reference assembly (CaTA) of 
103 215 TUSs and those with ≥3 read depth; frequency difference of ≥0.75 and ≤0.25

2005 SNPs  (CKAMs) 
validated

1341 CKAMs polymorphic 
across 58 accessions

Analysis of 119 polymorphic CKAMs on 
BC3F2 and parents (JG 11 × ICC 4958)

930 CKAMs polymorphic 
between ICC 4958 and PI 489777 

671 CKAMs genotyped on RILs of  
ICC 4958 × PI 489777 cross

625 CKAMs mapped on ICC 
4958 × PI 489777 linkage map

(a)
(b) (c) (d)

Figure 1 A schematic representation to select the informative SNPs for conversion into KASPar assay and their utilization for genetic mapping and

germplasm analysis. A total of four approaches—(i) Solexa ⁄ Illumina sequencing, (ii) tentative orthologous genes (TOGs), (iii) mining of expressed

sequence tags from public domain (iv) and allele-specific resequencing—were used to identify a set of 2486 nonredundant SNPs. Although efforts were

made to develop KASPar assays for all SNPs, successful assays were developed for 2005 SNPs. Screening of these assays on 58 Cicer spp. accessions

showed polymorphism with 1341 CKAMs, including 119 CKAMs showed polymorphism with JG 11 and ICC 4958, the parental lines of 12 BC3F2 lines

analysed. Furthermore, genotyping data were generated for 651 CKAMs on 131 RILs of the interspecific mapping populations, of which 625 CKAMs

were integrated into the chickpea genetic map.
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aligning these sequence reads with the chickpea transcriptome

assembly (CaTA) comprising 103 215 tentative unique

sequences (TUSs) (Hiremath et al., 2011) using Alpheus pipeline

(Miller et al., 2008) and pair-wise comparison of parental

genotypes considering selection criteria such as read depth of

‡3 and frequency difference of ‡0.75 and £0.25 (Azam et al.,

2012), a total of 15 361 SNPs in 9517 TUSs were selected

(Table 1). By comparing the identified SNPs across the three

parental combinations, 14 454 unique SNPs were identified

from 9517 nonredundant TUSs. To select nonredundant SNPs,

all the 14 454 SNPs in 9517 TUSs were compared with already

available SNPs developed in other studies (Gujaria et al., 2011;

Nayak et al., 2010; R.V. Penmetsa, N. Carraquilla-Garcia, A.D.

Farmer, R.K. Varshney, D.R. Cook, unpublished results). As a

result, a final set of 1409 SNPs from 1409 TUSs was selected.

Mining of sanger ESTs

On the basis of cluster analysis of 27 259 Sanger expressed

sequence tags (ESTs), 9569 unigenes including 2431 contigs

and 7138 singletons were identified in an earlier study (Varsh-

ney et al., 2009). A set of 729 contigs having ESTs from at

least two genotypes and read depth of ‡5 was explored for

SNP selection. An SNP with high polymorphism information

content (PIC) value (‡0.5) and having at least 50 bp window

on either sides was considered from each contig. Finally, a

nonredundant set of 286 SNPs from 286 TUSs were selected

(Figure 1).

Allele-specific sequencing of candidate genes

Allele resequencing of 220 genes on a set of 2–20 genotypes

representing nine Cicer species provided 1893 SNPs in our ear-

lier study (Gujaria et al., 2011). By considering the criteria of

selecting one SNP with higher PIC value from each gene and

50-bp region on both flanking side of the SNP, a total of 183

SNPs present in 183 genes were selected. In addition, four SNPs

coming from two drought-responsive genes (Nayak et al.,

2009) were also selected (Figure 1).

Allele-specific sequencing of TOGs

With a goal of identification of cross-species genetic markers,

allele-sequencing was conducted on ICC 4958 and PI 489777

for a total of 1440 tentative orthologous genes (TOGs) (R.V.

Penmetsa, N. Carraquilla-Garcia, A.D. Farmer, R.K. Varshney,

D.R. Cook, unpublished data). On the basis of SNP analysis on

this data set, a GoldenGate assay was developed for 768 SNPs

including 733 SNPs from TOGs and 155 SNPs from other

sources. Genotyping of the reference mapping population with

this GoldenGate assay integrated a total of 450 SNPs including

429 TOG-SNPs onto the genetic map. On the basis of design-

able criteria for KASPar assays, a total of 604 TOG-SNPs includ-

ing 410 mapped and 194 unmapped SNPs were selected

(Figure 1).

In brief, a set of 2486 SNPs including 1409 SNPs from

Solexa ⁄ Illumina sequencing, 286 SNPs from mining Sanger ESTs,

187 SNPs from allele-specific sequencing of candidate genes

and 604 TOG-SNPs was assembled (Table S1). It is important to

mention here that except for the 187 SNPs from allele rese-

quencing of candidate genes and 604 SNPs from TOGs, the

assembled SNPs were not validated earlier. Therefore, the com-

piled SNPs can be considered as putative SNPs.

Development and validation of KASPar assay

The selected set of 2486 SNPs was used for developing KASPar

assays (Table S1). The developed KASPar assays have been des-

ignated as Chickpea KASPar Assay Markers (CKAMs). All 2486

CKAMs were used for validation on a panel of 70 genotypes

(Table S2). These genotypes include 55 lines ⁄ varieties of the cul-

tivated species (C. arietinum) from 11 countries, three acces-

sions from the wild species (C. reticulatum) and 12 BC3F2 lines

generated after introgressing a genomic region containing QTLs

for several drought tolerance traits from ICC 4958 into JG 11

by using marker-assisted backcrossing approach (unpublished

results).

A total of 2005 (80.6%) CKAMs were validated of the

2486; of these, 1341 (66.8%) CKAMs were polymorphic

among 58 genotypes, 664 (33.1%) were monomorphic in

the genotypes tested, and 481 (19.4%) failed to generate a

useful amplification signal (Table S1, Figure 2). No attempt

was made to redesign the primer for failed CKAMs. A com-

parison of SNP predicted in silico (assembled) and alleles

called in the KASPar assays for the 2005 validated CKAMs

showed 100% consistency. The PIC values for the polymor-

phic CKAMs varied between 0.02 and 0.50 with an average

of 0.12 (Table S1).

Analysis of CKAMs on the parental genotypes of the map-

ping populations showed higher polymorphisms in interspecific

(C. arietinum · C. reticulatum) crosses than in intraspecific

(C. arietinum · C. arietinum) crosses. Among interspecific

crosses, maximum number of polymorphisms (930 CKAMs) was

observed in the reference mapping population (ICC 4958 · PI

489777) followed by crosses segregating for Helicoverpa resis-

tance, that is, ICC 3137 · IG 72953 (620 CKAMs) and ICC

3137 · IG 72933 (276 CKAMs). In the case of the intraspecific

crosses, maximum polymorphism was identified between Arerti

and ICC 4958 (159 CKAMs), which represent parents of MABC

population for improvement of chickpea for drought tolerance.

The polymorphism status of CKAMs between different parental

combinations is given in Table 2.

Table 1 A summary of identification of single nucleotide polymorphisms (SNPs) based on Solexa ⁄ Illumina sequencing

Genotype Treatment

Average

read length (bp)

No. of

reads (million)

Total number of SNPs (‡3 read depth,

frequency difference of ‡0.75 and £0.25)

PI 489777 – 36 26.3] 10 368

ICC 4958 Drought stress 36 15.6
]

586

ICC 1882 Drought stress 36 22.1

ICC 506 EB Helicoverpa stress 36 5.2
]

4677

ICCC 37 Helicoverpa stress 36 26.8
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Genetic diversity analysis

Genotyping data obtained for all 1341 polymorphic CKAMs on

58 chickpea genotypes (Table S3) were used for assessing the

genetic diversity and understanding their genetic relationships.

Genetic dissimilarity between different pairs of genotypes varied

from 0.02 (ICC 7554 and ICC 3137) to a maximum of 0.74 (PI

48977 and IG 72933) with a mean of 0.37. On the basis of the

dissimilarity data and UPGMA method, a hierarchical cluster

analysis was performed on all the 58 genotypes using DARWIN

V5.0.128 software (Perrier et al., 2003) (Figure 3). In the den-

drogram, the genotypes were grouped into two discrete major

clusters: the Cluster-I comprised only two wild species (C. retic-

ulatum) genotypes (IG 72953 and PI 489777), and the Cluster-II

comprised 56 genotypes of C. arietinum species, with an excep-

tion of one genotype IG 72933, belonging to C. reticulatum

species, that branches off sequentially at the base of the den-

drogram closer to the Cluster-I. In the Cluster-II, few landraces

and cultivars from India (Annigeri, ICC 4593, ICCC 37, ICCV

05530), Ethiopia (Arerti), Mexico (ICC 12037) and Israel (ICC

7571) formed a clear outlying group, with the remaining 48

genotypes clustering into two main groups—the Cluster-IIa and

the Cluster-IIb. The Cluster-IIa has 13 genotypes that mainly

belong to Afghanistan (2), Chile (1), Ethiopia (1), Iran (4), Portu-

gal (1), Turkey (1), Mexico (1) and former USSR (2). The Cluster-

IIb is comprised of 35 genotypes, of which 33 belong exclusively

to India, one to Iran and one to Cyprus. Within the Cluster-IIb,

(a) (b) (c)

(d) (e) (f)

Figure 2 Snapshots showing SNP genotyping with KASPar assays. Different possible scenarios of SNP genotyping in germplasm collection (a–c) and

interspecific RIL mapping population (d–f) have been shown. Marker genotyping data generated for each genotype were used for allele calling using

the automatic allele calling option. Allelic discrimination (two alleles) for a particular marker in the genotypes examined has been shown on a scatter

plot with axes ‘X’ and ‘Y’. The snapshot (a) shows monomorphic pattern, that is, occurence of only one allele (blue spots) for CKAM0790 marker. In

the snapshot (b), polymorphism pattern, that is, occurence of two alleles (blue and red spots) for CKAM1175 marker in almost equal proportion in the

germplasm collection, has been shown. All germplasm accessions show homozygosity for the corresponding alleles, and one accession shows missing

data (pink spot). The snapshot (c) shows heterozygosity, that is, occurence of both alleles (green spots) for CKAM1802 marker in nine germplasm

accessions in addition to occurence of two alleles in homozygous condition in several accessions (blue and red spots) and three accessions with missing

data. The snapshot (d) shows occurence of one allele (red spots) in majority of RILs, except two RILs with the other allele (blue spots) and two RILs with

missing data (brown spots). Two clusters of about 50% of RILs each with one allele (blue and red spots) along with two RILs with missing data (brown

spots) have been shown in the snapshot (e). The snapshot (f) shows occurence of one allele (blue spots) in several RILs and missing data in majority of

the lines.
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ICC 1882 is separated from the rest of the genotypes. Overall,

the clustering pattern showed a distinctive grouping of geno-

types into separate clusters based on their geographical origin

and also based on species background (Figure 3a).

Relationship of BC3F2 lines with the recurrent parent

A set of 12 BC3F2 generated after introgressing a genomic

region containing QTLs for several drought tolerance–related

traits in JG 11 variety after maker-assisted backcrossing (MABC)

with ICC 4958 genotype were tested with all 2005 CKAMs to

assess the genome recovery of JG 11 parent in the MABC lines.

As a result, 108–117 markers showed similarity between the

given BC3F2 line and JG 11 (Table S4). In brief, the tested BC3F2

lines showed genome recovery of JG 11 from 91% (BC3F2_170,

BC3F2_187, BC3F2_195) to 98% (BC3F2_120, BC3F2_248)

(Figure 3b). Furthermore, comparison of the BC3F2 lines with

ICC 4958 showed the presence of allele of ICC 4958 in

the BC3F2 lines for 10 CKAMs (CKAM0017, CKAM1802,

CKAM1444, CKAM0042, CKAM0043, CKAM1641, CKAM1963,

CKAM1933, CKAM1709 and CKAM1604). These markers seem

to be the potential mappable markers in the genomic region

transferred from ICC 4958 to JG 11.

Second-generation genetic map of chickpea

The reference mapping population (ICC 4958 · PI 489777) was

targeted for integrating CKAMs in the genetic map of chickpea.

In this context, a total of 930 CKAMs showed polymorphism

between the parental genotypes. The polymorphic CKAMs

include 503 Solexa ⁄ Illumina SNPs, 377 TOG-SNPs and 50 candi-

date gene sequencing–based SNPs. As genotyping data were

already available on the reference mapping population for all

371 TOG-SNPs via GoldenGate assay, only 118 markers repre-

senting all the linkage groups were selected for genotyping via

KASPar assays mainly for quality control. Therefore, genotyping

data were generated on the reference mapping population for

a total of 671 CKAMs (503 Solexa ⁄ Illumina SNPs, 50 candidate

genes SNPs and 118 TOG-SNPs). High-quality genotyping data,

however were generated for 651 CKAMs (492 Solexa ⁄ Illumina

SNPs, 46 candidate genes SNPs and 112 TOG-SNPs). Analysis of

genotyping data showed Mendelian segregation ratio for a total

Table 2 CKAMs-based polymorphisms in some segregating populations of chickpea

Parental genotypes of

segregating population Features of segregating populations

Marker data available for

both parental lines

Polymorphic

markers (%)

Interspecific mapping populations (Cicer arietinum · Cicer reticulatum)

ICC 4958 · PI 489777 International reference mapping population 1900 930 (48.9)

ICC 3137 · IG 72953 Helicoverpa resistance 1744 620 (35.6)

ICC 3137 · IG 72933 Helicoverpa resistance 1839 276 (15.0)

Intraspecific mapping populations (C. arietinum · C. arietinum)

ICC 4958 · ICC 1882 Drought tolerance and root traits 1966 148 (7.5)

ICC 283 · ICC 8261 Drought tolerance and root traits 1960 58 (3.0)

ICC 6263 · ICC 1431 Salinity tolerance 1966 54 (2.7)

JG 62 · ICCV 05530 Fusarium wilt (FW), Ascochyta blight (AB),

Botrytis grey mould (BGM)

1947 32 (1.6)

Annigeri · ICC 4958 Root traits 1939 125 (6.4)

ICC 506-EB · Vijay Helicoverpa resistance 1969 27 (1.4)

Marker-assisted backcrossing (MABC) populations

Arerti · ICC 4958 Introgressing root trait QTL 1964 159 (8.1)

Ejere · ICC 4958 Introgressing root trait QTL 1967 140 (7.1)

ICC 97105 · ICC 4958 Introgressing root trait QTL 1981 147 (7.4)

ICCV 10 · ICC 4958 Introgressing root trait QTL 1982 136 (6.8)

ICCV 95423 · ICC 4958 Introgressing root trait QTL 1984 124 (6.2)

JG 11 · ICC 4958 Introgressing root trait QTL 1986 119 (6.1)

DCP 92-3 · ICC 4958 Introgressing root trait QTL 1982 137 (6.9)

KAK 2 · ICC 8261 Introgressing root trait QTL 1967 40 (2.0)

ICCV 92318 (Chefe) · ICC 8261 Introgressing root trait QTL 1971 37 (1.9)

C 214 · ILC 3279 Introgressing AB resistance 1963 53 (2.7)

C 214 · WR 315 Introgressing FW resistance 1934 15 (0.8)

Phule G5 · Vishal Introgressing FW resistance 1954 27 (1.4)

Phule G12 · WR 315 Introgressing FW resistance 1980 26 (1.3)

JG 74 · JG 14 Introgressing FW resistance 1959 51 (2.6)

JG 74 · WR 315 Introgressing FW resistance 1970 35 (1.8)

Annigeri · WR 315 Introgressing FW resistance 1934 34 (1.8)

Annigeri · ICCV 10 Introgressing FW resistance 1935 29 (1.5)

Marker-assisted recurrent selection (MARS) mapping populations

JG 130 · ICCV 05107 Enriching drought tolerance alleles 1977 31 (1.6)

ICCV 2 · JG 11 Enriching salinity tolerance alleles and early flowering 1973 30 (1.5)

JG 11 · ICCV 04112 Enriching drought tolerance alleles 1975 27 (1.3)

SNP, single nucleotide polymorphisms.
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of 525 markers, and the remaining 126 (19.3%) markers exhib-

ited segregation distortion (Table S5) owing to skewed occur-

rence ⁄ distribution of one of the two parental alleles or high

percentage (60%) absence of allele data (Figure 2d,e,f).

As genotyping data were available for a total of 429

TOG-SNPs via GoldenGate assay (R.V. Penmetsa, N. Carraquilla-

Garcia, A.D. Farmer, R.K. Varshney, D.R. Cook, unpublished

data) and high-quality genotyping data were generated for 112

TOG-SNPs from this set via KASPar assay in the study, the

genotyping data for the remaining 317 TOG-SNPs generated via

GoldenGate assay were added to the data set of 651 CKAMs.

In addition, genotyping data were also assembled for (i) 61

genic molecular markers (GMMs) including 31 CGMMs, 15 CIS-

Rs and 15 ICCeMs (Gujaria et al., 2011), and (ii) 335 legacy

markers including SSRs from different sources (H-series, ICCMs,

CAMs, SSRs-Frankfurt University, ISSRs), SNaPshot assays-based

SNPs, CAPS, DArTs (Thudi et al., 2011), and RAPDs. In sum-

mary, genotyping data were compiled for 1364 markers and

used for constructing the genetic map. The most likely order of

the markers was determined based on the verified position of

GMMs (Gujaria et al., 2011), TOG-SNPs (R.V. Penmetsa,

N. Carraquilla-Garcia, A.D. Farmer, R.K. Varshney, D.R. Cook,

unpublished data) and legacy markers (Nayak et al., 2010; Thu-

di et al., 2011). By using JOINMAP v 4.0 program (Van Ooijen

et al., 2006), a total of 1328 markers were mapped onto eight

linkage groups (CaLG01–CaLG08) as per the nomenclature

given in Thudi et al. (2011). The developed genetic map spans

a total of 788.6 cM distance with an average intermarker

distance of 0.59 cM (http://cmap.icrisat.ac.in/cmap/sm/cp/hire-

math/) (Figure 4). Details about different type of markers inte-

grated in this map are given in Table 3. The number of markers

per linkage group varied from 107 (CaLG08) to 255 (CaLG04).

The total distance of individual linkage groups ranged from

70.5 (CaLG08) to 116.6 cM (CaLG01).

Uneven distribution and clustering of markers was observed

along the length of all the chickpea linkage groups in this map.

Occurrence of both minor (3–5 cM) and major (>5 cM) gaps

between adjacent loci was observed (Table 4). A detailed obser-

vation revealed extensive clustering of CKAMs and TOG-SNPs

near the telomeric regions of CaLG03, CaLG06, CaLG07 and

(a)

(b)

Figure 3 Genetic relationships in germplasm and BC3F2 lines. Hierarchical clustering of chickpea accessions was carried out based on UPGMA using

DARwin. The part (a) of the figure shows phylogenetic relationships among 58 germplasm lines based on allelic data for 1341 CKAMs. All the geno-

types analysed could be grouped into two main clusters (I and II). The Cluster-I comprised two wild species genotypes (Cicer reticulatum) and Cluster- II

comprises accessions mainly of Cicer arietinum species coming from 11 different countries. The part (b) of the figure shows genetic dissimilarity of 12

BC3F2 lines with JG 11, the recurrent parent.
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Figure 4 A second-generation genetic map of chickpea. The genetic map based on reference mapping population (ICC 4958 · PI 489777) is comprised of a

total of 1328 marker loci including newly developed 625 CKAMs, 314 tentative orthologous genes (TOGs)-SNPs (R.V. Penmetsa, N. Carraquilla-Garcia, A.D.

Farmer, R.K. Varshney, D.R. Cook, unpublished data) and 389 published marker loci in earlier studies. Eight different linkage groups are shown and designated as

CaLG01 to CaLG08. For the visualization of marker names and orders, each LG has been split into 2–5 parts. For instance, four LGs, namely CaLG02, CaLG07

and CaLG08, are split into A and B parts; three LGs, namely CaLG04, CaLG05 and CaLG06, are split into A, B and C parts; the CaLG01 is divided into A, B, C

and D parts; and CaLG03 is divided into A, B, C, D and E parts. Map distances (cM) are presented on the left side of the bars, and corresponding markers are

listed on the right side of the bars. Each marker class is colour coded as follows: green, CKAMs; red, TOGs-SNPs; black, CGMMs; dark blue, CISRs; golden yellow,

ICCeMs; light blue, DArTs; and brown, legacy markers. High resolution genetic map is available at http:cmap.icrisat.ac.in/cmap/sm/cp/hiremath/.
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Figure 4b (Continued)
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CaLG08 (Figure 4). In the case of CaLG01, CaLG02, CaLG04

and CaLG05, more CKAMs were clustered near the subtelomeric

regions.

Comparison of the developed genetic map with other
chickpea maps

The developed genetic map with 1328 marker loci was com-

pared with the 1291 loci genetic map (Thudi et al., 2011) and

300 loci transcript map of Gujaria et al. (2011). The details of

comparison of these maps are available at http://cmap.icri-

sat.ac.in/cmap/sm/cp/hiremath/. These comparisons reflect a

greater congruency in terms of grouping of markers into spe-

cific linkage groups. A few exceptions were also observed. For

instance, TA4L-TA199R-3_300 and TA4L-TA191R_291-284 loci

were mapped on LG04 by Thudi et al. (2011) and on LG06 by

Gujaria et al. (2011); these loci have been assigned to CaLG07

in the present map. Similarly, the marker loci TA5L-TS38R-

1_470 and TA5L-TS129R_208 that were present on LG05 and

LG08 of genetic maps developed by Thudi et al. (2011) and

Gujaria et al. (2011), respectively, could not be assigned to any
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linkage group in this genetic map. Apart from these shifts in

marker locations, no other discrepancy was observed.

Genome relationships of chickpea with closely related
legume species

We combined both the genetic map position information for

chickpea loci and genome sequence information of closely

related species of different clades to evaluate the degree of

synteny between genomes of chickpea and other related

legume species. A set of 1064 of 1328 mapped loci for

which both genetic map positions and sequence information

were available were compared with genome assemblies of

Medicago truncatula (Mt 3.5), Lotus japonicus (Lj 2.5 pseudo-

molecules), soybean (Glycine max) (Glyma1) and the genetic

map of cowpea (Vigna unguiculata, Muchero et al., 2009)

(Figure 5).

In the case of chickpea and Medicago, 555 unique chickpea

loci showed significant matches with 1558 genomic regions on

Medicago chromosome (Table 5). Most of the chickpea loci

have ‡2 matches in Medicago. About 111 chickpea loci from

CaLG01 showed similarity with Mtchr02 genomic regions. Simi-

larly, loci from CaLG02 showed maximum matches to Mtchr05,

followed by CaLG03 with Mtchr07, CaLG04 with Mtchr01,

CaLG05 with MtChr03, CaLG06 with Mtchr04, CaLG07 with

MtChr04, and CaLG08 with MtChr05. In brief, each linkage

group of chickpea showed considerable synteny with one or

more chromosomes of Medicago, although internal duplication

of DNA sequences ⁄ blocks was not observed (Figure 5a).

In the comparison of chickpea with soybean, 494 chickpea

unique loci matched 1798 short stretches distributed on differ-

ent chromosomes of soybean (Glyma1 assembly) (Figure 5b,

Table S6). Each chickpea marker locus showed similarity to

Table 3 Distribution of markers on the second-generation linkage map of chickpea

Marker type Total markers used

Chickpea linkage group

Total markers

mappedCaLG01 CaLG02 CaLG03 CaLG04 CaLG05 CaLG06 CaLG07 CaLG08

CKAMs 651 52 81 57 132 90 86 59 68 625

TOG-SNPs 317 56 29 16 67 58 56 19 13 314

Published marker loci

GMMs

CGMMs 32 4 10 2 6 3 2 2 2 31

CISRs 15 2 – 2 – 4 4 – 3 15

ICCeMs 15 2 2 2 2 1 1 1 1 12

Legacy markers

H-series 44 4 7 6 5 7 5 6 4 44

ICCMs 46 3 4 9 10 7 6 5 2 46

CAMs 10 1 – 1 1 2 4 1 – 10

SSRs 93 14 11 16 14 14 10 9 5 93

ISSRs 26 8 8 – 2 2 1 5 – 26

SNaPshot assay-based SNPs 79 8 8 18 12 8 8 10 7 79

CAPS 13 – 1 4 2 2 1 – – 10

DArTs 19 1 – 3 2 5 2 5 1 19

RAPD 4 1 – – – – – 2 1 4

Total no. of markers 1364 156 161 136 255 203 186 124 107 1328

Total distance (cM) 116.6 92.94 101.8 92.5 95.6 106.6 112.1 70.5 788.6

Average intermarker distance (cM) 0.75 0.58 0.75 0.36 0.47 0.57 0.90 0.66 0.59

SNP, single nucleotide polymorphisms; SSR, simple sequence repeats; TOG, tentative orthologous genes.

Table 4 Distribution of marker clusters on the second-generation linkage map of chickpea

Linkage

group (LG)

No. of

markers

Length

(cM)

Intermarker

distance

No. of

clusters

Genetic mapping position and number of markers

(in parenthesis) in clusters observed

CaLG01 156 116.6 0.75 3 23 (8), 39 (5), 61 (6)

CaLG02 161 92.94 0.58 7 17 (6), 41 (6), 53 (5), 56 (6), 57 (8), 71 (7), 72 (8)

CaLG03 136 101.8 0.75 1 35 (8)

CaLG04 255 92.5 0.36 5 52 (8), 53 (19), 54 (14), 60 (7), 30 (11)

CaLG05 203 95.6 0.47 5 53 (7), 58 (7), 69 (10), 70 (15), 91 (6)

CaLG06 186 106.6 0.57 4 3 (7), 10 (15), 19 (20), 82 (12)

CaLG07 124 112.1 0.90 2 57 (11), 64 (12)

CaLG08 107 70.5 0.66 2 8 (8), 38 (7)

Total 1328 788.6 5.04 29

Average 166 98.58 0.63 3.6
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Figure 5 Genome relationships of chickpea with closely related legume species. Homologous relationship of chickpea genome with four legume spe-

cies, that is, Medicago truncatula (a), soybean (b), Lotus japonicus (c) and cowpea (d), has been shown by comparing sequence data of 1064 mapped

markers of chickpea with genome sequence of Medicago (Mt 3.5), L. japonicus (Lj 2.5 pseudomolecules), soybean (Glyma1 genome assembly) and

cowpea genetic map (Muchero et al., 2009). Maximum similarity was observed with Medicago (1558), followed with soybean genome (1798), Lotus

(438) and least with cowpea (55). The percentage of matches in each species is in congruence with their phylogenetic distances.

Table 5 Mapping of chickpea marker loci on Medicago chromosomes

Chickpea linkage

groups

Number of chickpea

unique loci

Medicago truncatula chromosomes

MtChr01 MtChr02 MtChr03 MtChr04 MtChr05 MtChr06 MtChr07 MtChr08 MtChr0 Total

CaLG01 69 9 111 18 16 22 9 19 8 15 227

CaLG02 61 7 9 10 14 90 23 12 8 7 180

CaLG03 62 12 25 30 20 41 15 99 26 12 280

CaLG04 95 104 1 7 24 12 11 9 10 19 197

CaLG05 93 11 3 129 13 14 5 9 13 19 216

CaLG06 76 6 5 8 87 39 11 11 51 9 227

CaLG07 46 1 7 5 54 8 3 2 11 1 92

CaLG08 53 4 2 3 4 99 6 14 1 6 139

Total 555 154 163 210 232 325 83 175 128 88 1558

*The numbers shown in bold represent the highest matches between chickpea and Medicago.
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approximately 3–4 regions on Glyma1. This reflects the number

of matches one would expect to see based on the one round

of whole genome duplication in soybean. Only 267 unique

chickpea loci matched with 438 regions on Lotus (Table S7, Fig-

ure 5c). In the case of cowpea in which genetic map was used

for the comparison, least matches were observed between

chickpea and cowpea genomes. Only 50 unique chickpea loci

showed synteny with 55 loci of cowpea map (Table S8,

Figure 5d).

Discussion

Cost-effective KASPar assays for SNP genotyping

Until recently, SSR markers were the commonly used markers

for chickpea genetics research and breeding applications

(Upadhyaya et al., 2011). Nevertheless, in some cases, genetic

maps have also been developed using DArTs (Thudi et al.,

2011), CISRs (Gujaria et al., 2011) and SNPs ⁄ CAPs (Choudhary

et al., 2012; Gujaria et al., 2011; Nayak et al., 2010). With the

availability of whole genome or EST sequences in many crop

species, the use of SNP markers has been proven attractive for

high-throughput use in molecular breeding (Rafalski, 2002;

Varshney, 2010). High-throughput SNP genotyping platforms

such as Illumina’s GoldenGate or Infinium assays are being used

for large-scale SNP genotyping. While the high-throughput SNP

genotyping platforms are very useful for rapid genotyping of

mapping population or germplasm collections, they are not

generally economical for projects such as in silico SNP valida-

tion, gene-specific SNP assays, marker saturation in the regions

of interest and marker application projects that utilizes defined

set ⁄ panel of smaller number of SNP markers on varying number

of genotypes. In such cases, SNP genotyping technologies such

as arrayed primer extension reaction (APEX) (Podder et al.,

2008), dynamic allele-specific hybridization (DASH) (Podder

et al., 2008), molecular beacons (Mhlanga and Malmberg,

2001), primer extension followed by MALDI-TOF (alternative to

Sequenom’s assays) (Sauer et al., 2000) and KASPar assay

(http://www.kbioscience.co.uk/reagents/KASP.html) have been

developed. While choosing a particular SNP genotyping plat-

form, several features such as the reproducibility, accuracy,

capability of multiplexing, the level of throughput, time con-

sumption and cost (considering both the equipments required

and the cost per genotype) need to be considered. As molecu-

lar breeding applications, generally, require screening of large

populations with a few markers, this study developed cost-

effective KASPar marker assays for SNP genotyping in chickpea.

A total of 2486 SNPs were assembled from different sources

for developing KASPar assays. KASPar assays developed for

chickpea have been referred as CKAMs. Genotyping of these

2486 CKAMs on a panel of 70 genotypes provided a validated

set of 2005 CKAMs. This includes KASPar assays for 539 TOG-

SNPs that were initially assayed on GoldenGate assays. Conver-

sion of these TOG-SNPs into KASPar assay will facilitate use of

TOG-SNPs in chickpea genetics and breeding application.

To compare the success rate of converting putative SNPs into

successful and informative KASPar assays, amplification and

polymorphism statistics were checked across the four sets of

SNPs. The set of markers that gave higher rate of failures were

those SNPs identified from alignments of Sanger ESTs (172 SNP

markers, i.e. 60% of a total of 286). The possible reasons could

be attributed primarily to (i) SNPs were mined from the ESTs

with sequencing artefacts, (ii) frequency of one of two alleles

for a given SNP is very low in the EST data set, and (iii) all the

genotypes for which EST-based mining approach provided SNPs

were not included in the genotype panel used in the current

study (Varshney et al., 2009). The remaining number of markers

that could not be validated include 222 (15.7% of total of

1409) from Alpheus pipeline predicted SNPs, 65 SNPs (10.7%

out of 604) from TOG-SNPs and 22 SNPs (11.7% out of 187)

from allele resequencing data. Overall, the KASPar assay has

shown 81% validation success rate in our study. Comparison of

costs and time involved in genotyping the SNPs via KASPar

assays and GoldenGate assays for the same set of SNPs in this

study, showed superiority of KASPar assays over GoldenGate

assays, especially when limited number of SNPs (<500) are

genotyped with <100 lines.

The PIC values of validated CKAMs varied from 0.02 to 0.50

with an average of 0.12. Low range of PIC value of CKAMs is

not unexpected as genetic variation in the chickpea gene pool

is limited (Nayak et al., 2010; Thudi et al., 2011). Also, this

study identifies polymorphic markers (15–930) for different

mapping populations segregating for drought, salinity, Fusarium

wilt, Ascochyta blight, etc. It, therefore, provides opportunities

for mapping resistance to biotic and tolerance to abiotic stres-

ses in chickpea.

Diversity analysis and molecular breeding applications

This study demonstrates the suitability of KASPar assays for SNP

genotyping for understanding the relationships in the germplasm

collection as well as for molecular breeding applications. Despite

using a wide diverse collection of genotypes with all 2005

CKAMs, an overall success rate of 81% was achieved. The

genetic dissimilarity analysis of the germplasm accessions deter-

mines relationships of accessions with each other. The dendro-

gram developed based on genetic dissimilarity coefficient

depicted clear clustering of chickpea accessions into two main

clusters as per their geographical origin and species type of all 58

accessions (55 accessions of C. arietinum species and three

accessions of C. reticulatum species) analysed. Two accessions of

C. reticulatum are resolved as a separate group; however, IG

72933, a C. reticulatum, was found closer to C. arietinum.

Similar results were observed in an earlier genetic diversity study

using 513 SSR markers in which the IG 72933 genotype showed

40% similarity with the C. arietinum genotypes (Gudipati, 2007).

The Cluster-II contained more geographically divergent material

of the C. arietinum species. As expected, accessions of all Indian

origin formed a separate clade, and the remaining accessions

from other countries were grouped into another clade (IIa). Over-

all, these results are in general congruence with earlier studies

and indicate that the cluster topology is reliable.

The study also demonstrates the utility of CKAMs for assess-

ing the genome recovery of BC3F2 lines. This study identified

five lines (BC3F2_120, BC3F2_170, BC3F2_187, BC3F2_195 and

BC3F2_268) with > 95% genome recovery of JG 11 in MABC

experiments. These lines may be used for multi-location field tri-

als for evaluating agronomic performance as well as for devel-

oping the near isogenic lines (NILs) for fine mapping the QTLs.

Second-generation genetic map of chickpea with more
anchoring points with other legume genomes

As expected, the number of polymorphic markers observed

between interspecific mapping populations is higher than intra-
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specific mapping populations. For instance, maximum number

of polymorphic markers is 930 (ICC 4958 · PI 489777) in

interspecific crosses as compared with 159 (Arerti · ICC 4958)

in intraspecific crosses. As ICC 4958 · PI 489777 population is

a reference mapping population, genotyping data were gener-

ated for the polymorphic CKAMs. Although genotyping data

were earlier generated for TOG-SNPs on the mapping popula-

tion via GoldenGate assays (R.V. Penmetsa, N. Carraquilla-

Garcia, A.D. Farmer, R.K. Varshney, D.R. Cook, unpublished

data), a set of 118 TOG-SNPs distributed on all eight LGs was

also targeted for generating genotyping data via KASPar assays

for quality control purpose. Comparison of high-quality data for

112 markers generated via KASPar assay with that of Golden-

Gate assay showed no discrepancy. After assembling genotyp-

ing data for 539 remaining CKAMs, 317 TOGs and 396 marker

loci from other sources (Gujaria et al., 2011; Nayak et al.,

2010; R.V. Penmetsa, N. Carraquilla-Garcia, A.D. Farmer, R.K.

Varshney, D.R. Cook, unpublished data; Thudi et al., 2011),

genotyping data for a total of 1364 marker loci were consid-

ered for mapping. As a result, a comprehensive genetic map

comprising 1328 marker loci including 939 new marker loci

(625 CKAMs, 314 TOGs-SNPs) and 389 already published

mapped marker loci was developed. The second-generation

genetic map has a coverage of 788.6 cM genetic distance. On

an average, each of the linkage group has 166 markers with an

average distance of 98.6 cM. This map has probably the highest

number of gene-based SNP markers (1088) mapped in chickpea

so far. Earlier to this map, Gujaria et al. (2011) developed a

transcript map with 126 gene-based markers and Choudhary

et al. (2012) developed a genetic map with 406 marker loci

including 177 gene-based markers. This map has approximately

eightfold gene-based markers as compared with the above-

mentioned studies. Another important feature with this genetic

map is the availability of cost-effective KASPar assays for the

mapped gene-based markers that can be used in any number

as well as on a variable number of lines. The quality and accu-

racy of the second-generation genetic map was evaluated by

comparing it with several genetic maps developed in earlier

studies (Gujaria et al., 2011; Nayak et al., 2010; Thudi et al.,

2011; Winter et al., 1999).

Clustering of two or more markers is a commonly occurring

phenomenon observed in several earlier genetic maps of chick-

pea (Nayak et al., 2010; Thudi et al., 2011; Winter et al.,

1999). Only CKAMs and TOG-based SNPs were clustered, which

constitute a large proportion of mapped markers [i.e. 625

CKAMs and 314 TOG-SNPs (939, 71%) of 1328] compared

with other marker types. This clustering may be attributed

mainly to random selection of markers from the closely spaced

regions of the genome that have undergone comparatively less

number of recombination events.

As a complement to the gene-based linkage map developed

in this study, we compared the sequences of these mapped loci

with genome assemblies ⁄ genetic maps of four legume species

(Medicago, Lotus, cowpea and soybean). Through the compar-

ative analysis, high conservation of synteny was observed

between chickpea and Medicago, whereas lowest level of synt-

eny conservation was observed between chickpea and cowpea.

Apparently, during the time of analysis genome sequence infor-

mation was not available for cowpea; hence, the analysis was

carried out by comparing with high-density linkage map devel-

oped by Muchero et al. (2009) available then. As a result, least

similarity was identified between chickpea and cowpea,

although chickpea is phylogenetically closer to cowpea than it

is to soybean, which shares the same common ancestor relative

to the ancestor of chickpea, Medicago and Lotus (Wojscie-

chowski et al., 2004). In all the other cases, high level of

similarity was observed (>70%, 1E-05) between sequences of

chickpea, and those of compared legumes, however, are often

punctuated or interrupted by chromosomal rearrangements,

thereby resulting in disruption of the linear order of the genes.

Subsequently, these variations (insertion, deletion, duplication

or rearrangements) form the basis for evolution of diverse

genomes. One or more chickpea loci match to a single locus

on Medicago chromosome, and similar pattern was observed

for the remaining three legume genomes with chickpea. This

may reflect segmental duplication events of chromosomal

stretches, or the mapped loci may correspond to paralogous

genes or same gene family members. Recent analysis of Medi-

cago genome has revealed that higher rates of mutations and

chromosomal rearrangements are known to have occurred

after the whole genome duplication event as compared with

other model legumes such as Glycine max and L. japonicus

(Young et al., 2011).

A number of chickpea unique loci matching to different

chromosomal regions on Mt 3.5, Glyma1, Lj 2.5 and cowpea

genetic map were identified. Of the 69 chickpea unique loci

that mapped on 227 regions distributed over eight chromo-

somes of Medicago, approximately 49% (i.e. 111 of 227)

matched to the MtChr02 and the remaining 116 were similar

to those on other chromosomes. Only 53 loci are in linear

order with Mtchr02 chromosomal regions, and the remaining

are in nonlinear positions. These findings support the earlier

reports by Choi et al. (2004), Nayak et al. (2010) and Zhu

et al. (2005) that one to one synteny does not hold true

between chickpea and the compared legume species, and the

synteny is restricted only to small genetic or genomic intervals

(Young et al., 2011). Our comparative results showed that

regions of CaLG02 and CaLG08 are strongly similar to Mt05,

which in turn shows high similarity to regions on Gm01,

Gm02 and Gm11, which are consistent with the findings of

Young et al. (2011).

Conclusions

The study reports compilation of a large number of SNPs and

their conversion into cost-effective KASPar assays. A set of

2005 KASPar assays have been developed for accelerating

chickpea genetics research and breeding applications. Together

with these markers and recently developed SSR markers from

genomic libraries (Nayak et al., 2010) and BAC-end sequences

(Thudi et al., 2011), DArT markers (Thudi et al., 2011), CISR-

and CAPS-based CGMMs, >10 000 markers have become avail-

able in chickpea. The available marker resource should be able

to tackle the issue of narrow genetic diversity in the gene pool

as it is now possible to identify reasonable number of polymor-

phic markers in any given combination of cross. Genetic struc-

ture information gained on 58 chickpea accessions may be

useful in finding suitable parental combinations for developing

the new mapping populations segregating for different traits of

interest to chickpea breeders. Furthermore, a number of poly-

morphic markers were identified in many existing mapping pop-

ulations that can be used for developing genetic maps and

mapping of different agronomic traits. Many polymorphic mark-

ers were found to be common in many mapping populations,
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revealing their usefulness in providing bridging markers and for

comparing different chickpea maps. Developed genetic map is

the most enriched genetic map for gene-based markers. This

map should be useful not only in comparing different chickpea

genetic maps, but also in anchoring the physical map, currently

underway, as well as establishing more anchor points among

genomes of chickpea and other legume species.

Experimental procedure

Plant material and DNA extraction

A set of 70 different chickpea genotypes was used for valida-

tion of SNPs using KASPar assays. Details of these genotypes

are given in Table 2 and Table S2. Furthermore, a set of 131

recombinant inbred lines (RILs) derived from the cross between

ICC 4958 (C. arietinum) and PI 489777 (C. reticulatum) was

used for genetic mapping.

Total genomic DNA of all the accessions was extracted from

leaves of two-week-old seedlings using high-throughput mini

DNA extraction protocol as mentioned in Cuc et al. (2008).

The quality and quantity of extracted DNAs were assessed on

0.8% agarose gel. The DNA was normalized to 5 ng ⁄ lL for

genotyping.

RNA Sequencing by Solexa ⁄ Illumina

Five different chickpea genotypes, viz. ICC 4958, ICC 1882, PI

489777, ICC 506 and ICCC 37, which are parents of different

mapping populations, were selected for RNA sequencing. Roots

of 22-day-old seedlings of ICC 4958 and ICC 1882 were sub-

jected to drought stresses, and subsequently total RNA was

extracted from both genotypes (Hiremath et al., 2011). About

22-day-old leaves of ICC 506 and ICCC 37 were infested with

larvae of Helicoverpa armigera for a period of 5 days under

green house conditions (temperature of 28 ± 5 �C and relative

humidity of >65%). After a brief infestation period, leaf sam-

ples from both genotypes were harvested for total RNA extrac-

tion. Total RNA was also extracted from 22-day-old root tissues

of PI 489777, a wild species genotype. Subsequently, the total

RNA samples of all the genotypes were sent for Solexa ⁄ Illumina

sequencing at National Center for Genome Research (NCGR),

USA.

Development and analysis of KASPar assays

For developing the KASPar assays, 50 bp upstream and 50 bp

downstream flanking sequences around the variant position

(SNP) were selected (Table S1). Subsequently, KASPar assays for

the targeted SNPs were carried out at KBioscience, UK. Com-

plete details on principle and procedure of the assay are avail-

able at http://www.kbioscience.co.uk/reagents/KASP_manual.

pdf and http://www.kbioscience.co.uk/download/KASP.swf. On

the basis of the fluorescence obtained, allele call data are

viewed graphically as a scatter plot for each marker assayed

using the SNPViewer. The consistency between the predicted

SNP and assayed ones was checked for each SNP marker.

Evaluation of polymorphism in chickpea accessions

The PIC refers to the value of a marker for detecting polymor-

phism within a given germplasm, depending on the number of

detectable alleles and the distribution of their frequency. In this

study, the PIC value of markers was calculated using the follow-

ing formula (Anderson et al., 1993):

PIC ¼ 1�
Xn

i�1

p2
i

Where ‘n’ denotes the total number of alleles and ‘p’ refers

to the frequency of the ‘i’th allele at a genetic locus in different

genotypes.

Genetic diversity analysis

To evaluate the relationship between chickpea germplasm

accessions, SNP allele call data obtained for polymorphic mark-

ers were used for calculating both pair-wise genetic distance

and per cent dissimilarity matrix to construct a dendrogram

using DARWIN V5.0.128 software (darwin.cirad.fr/darwin/

Home.php, Perrier et al., 2003). Cluster analysis was carried out

using the UPGMA method.

Genetic mapping

Genotyping data obtained using KASPar assays (CKAMs) were

compiled with the marker data for TOGs-SNPs (R.V. Penmetsa,

N. Carraquilla-Garcia, A.D. Farmer, R.K. Varshney, D.R. Cook,

unpublished data) and selected markers from all 8 linkage

groups mapped in earlier studies (Gujaria et al., 2011; Nayak

et al., 2010; Thudi et al., 2011). Segregation data for CKAMs

were tested for goodness of fit to the expected Mendelian ratio

of 1:1 using chi-square (v2) analysis (P < 0.05). All markers were

primarily divided into linkage groups using the ‘group’ com-

mand of MAPMAKER ⁄ EXP 3.0 program (Lander et al., 1987). How-

ever, to construct high-quality genetic map, those markers

grouped by MAPMAKER were mapped using JOINMAP 4 program

(Stam, 1993; Van Ooijen, 2006; http://www.kyazma.

nl/index.php/mc.JoinMap/). ‘Kosambi’ mapping function was

used to calculate centimorgan (cM) distances. LOD values rang-

ing from 3 to 7 were considered for grouping and mapping.

MAPCHART (2.1v) was used for drawing maps (Voorips, 2002,

http://www.biometris.wur.nl/uk/Software/MapChart/).

Comparative mapping between chickpea and closer
legumes

Sequences data for mapped chickpea marker loci were queried

using BLAST against genomes of M. truncatula (Mt 3.5),

L. japonicus (Lj 2.5 pseudomolecules), soybean (Glyma1 genome

assembly) and cowpea genetic map (Muchero et al., 2009). All

the databases mentioned are available at http://comparative-

legumes.org/. Hits matching a minimum of 70% sequence

identity were retained for comparative study. Identification

of homologous blocks was performed using I-ADHORE v2.1

(Vandepoele et al., 2002). For the purpose of developing Circos

images, cM distances on the chickpea linkage groups were

scaled up by a factor of 250 000 to match similar base pair

lengths of the chromosomes of other legumes’ genomes.

Visualization of blocks was performed with Circos26. Scales

along the outer edge of the chickpea linkage groups show

actual cM distances, while the scale along the outer edge of

the Medicago chromosomes are in Mb.
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