Journal articles 2014
Documents
Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African Sorghum
Leiser WL, Rattunde HFW, Weltzien E, Cisse N, Abdou M, Diallo A, Tourè AO, Magalhaes JV and Haussmann BIG (2014). Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African Sorghum. BMC Plant Biology 14:206 (DOI:10.1186/s12870-014-0206-6). (G7010.03.03)
Abstract: Background Sorghum (Sorghum bicolor L. Moench) productivity is severely impeded by low phosphorus (P) and aluminum (Al) toxic soils in sub-Saharan Africa and especially West Africa (WA). Improving productivity of this staple crop under these harsh conditions is crucial to improve food security and farmer’s incomes in WA.
Results This is the first study to examine the genetics underlying sorghum adaptation to phosphorus limitation in a wide range of WA growing conditions. A set of 187 diverse sorghum genotypes were grown in 29 –P and + P field experiments from 2006-2012 in three WA countries. Sorghum grain yield performance under –P and + P conditions was highly correlated (r = 0.85***). Significant genotype-by-phosphorus interaction was detected but with small magnitude compared to the genotype variance component. We observed high genetic diversity within our panel, with rapid linkage disequilibrium decay, confirming recent sequence based studies in sorghum. Using genome wide association mapping based on 220 934 SNPs we identified one genomic region on chromosome 3 that was highly associated to grain yield production. A major Al-tolerance gene in sorghum, SbMATE, was collocated in this region and SbMATE specific SNPs showed very high associations to grain yield production, especially under –P conditions, explaining up to 16% of the genotypic variance.
Conclusion The results suggest that SbMATE has a possible pleiotropic role in providing tolerance to two of the most serious abiotic stresses for sorghum in WA, Al toxicity and P deficiency. The identified SNPs can help accelerate breeding for increased sorghum productivity under unfavorable soil conditions and contribute to assuring food security in WA.
Leiser WL, Rattunde HFW, Weltzien E, Cisse N, Abdou M, Diallo A, Tourè AO, Magalhaes JV and Haussmann BIG (2014). Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African Sorghum. BMC Plant Biology 14:206 (DOI:10.1186/s12870-014-0206-6). (G7010.03.03)
Abstract: Background Sorghum (Sorghum bicolor L. Moench) productivity is severely impeded by low phosphorus (P) and aluminum (Al) toxic soils in sub-Saharan Africa and especially West Africa (WA). Improving productivity of this staple crop under these harsh conditions is crucial to improve food security and farmer’s incomes in WA.
Results This is the first study to examine the genetics underlying sorghum adaptation to phosphorus limitation in a wide range of WA growing conditions. A set of 187 diverse sorghum genotypes were grown in 29 –P and + P field experiments from 2006-2012 in three WA countries. Sorghum grain yield performance under –P and + P conditions was highly correlated (r = 0.85***). Significant genotype-by-phosphorus interaction was detected but with small magnitude compared to the genotype variance component. We observed high genetic diversity within our panel, with rapid linkage disequilibrium decay, confirming recent sequence based studies in sorghum. Using genome wide association mapping based on 220 934 SNPs we identified one genomic region on chromosome 3 that was highly associated to grain yield production. A major Al-tolerance gene in sorghum, SbMATE, was collocated in this region and SbMATE specific SNPs showed very high associations to grain yield production, especially under –P conditions, explaining up to 16% of the genotypic variance.
Conclusion The results suggest that SbMATE has a possible pleiotropic role in providing tolerance to two of the most serious abiotic stresses for sorghum in WA, Al toxicity and P deficiency. The identified SNPs can help accelerate breeding for increased sorghum productivity under unfavorable soil conditions and contribute to assuring food security in WA.
The use of SNP markers for linkage mapping in diploid and tetraploid peanuts
Bertioli DJ, Ozias-Akins P, Chu Y, Dantas KM, Santos SP, Gouvea E, Guimarães PM, Leal-Bertioli SCM, Knapp SJ and Moretzsohn MC (2014). The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. G3 4(1):89–96. First published online in November 2013. (G6010.01)
Abstract: Single nucleotide polymorphic markers (SNPs) are attractive for use in genetic mapping and marker-assisted breeding because they can be scored in parallel assays at favorable costs. However, scoring SNP markers in polyploid plants like the peanut is problematic because of interfering signal generated from the DNA bases that are homeologous to those being assayed. The present study used a previously constructed 1536 GoldenGate SNP assay developed using SNPs identified between two A. duranensis accessions. In this study, the performance of this assay was tested on two RIL mapping populations, one diploid (A. duranensis × A. stenosperma) and one tetraploid [A. hypogaea cv. Runner IAC 886 × synthetic tetraploid (A. ipaënsis × A. duranensis)4×]. The scoring was performed using the software GenomeStudio version 2011.1. For the diploid, polymorphic markers provided excellent genotyping scores with default software parameters. In the tetraploid, as expected, most of the polymorphic markers provided signal intensity plots that were distorted compared to diploid patterns and that were incorrectly scored using default parameters. However, these scorings were easily corrected using the GenomeStudio software. The degree of distortion was highly variable. Of the polymorphic markers, approximately 10% showed no distortion at all behaving as expected for single-dose markers, and another 30% showed low distortion and could be considered high-quality. The genotyped markers were incorporated into diploid and tetraploid genetic maps of Arachis and, in the latter case, were located almost entirely on A genome linkage groups.
Bertioli DJ, Ozias-Akins P, Chu Y, Dantas KM, Santos SP, Gouvea E, Guimarães PM, Leal-Bertioli SCM, Knapp SJ and Moretzsohn MC (2014). The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. G3 4(1):89–96. First published online in November 2013. (G6010.01)
Abstract: Single nucleotide polymorphic markers (SNPs) are attractive for use in genetic mapping and marker-assisted breeding because they can be scored in parallel assays at favorable costs. However, scoring SNP markers in polyploid plants like the peanut is problematic because of interfering signal generated from the DNA bases that are homeologous to those being assayed. The present study used a previously constructed 1536 GoldenGate SNP assay developed using SNPs identified between two A. duranensis accessions. In this study, the performance of this assay was tested on two RIL mapping populations, one diploid (A. duranensis × A. stenosperma) and one tetraploid [A. hypogaea cv. Runner IAC 886 × synthetic tetraploid (A. ipaënsis × A. duranensis)4×]. The scoring was performed using the software GenomeStudio version 2011.1. For the diploid, polymorphic markers provided excellent genotyping scores with default software parameters. In the tetraploid, as expected, most of the polymorphic markers provided signal intensity plots that were distorted compared to diploid patterns and that were incorrectly scored using default parameters. However, these scorings were easily corrected using the GenomeStudio software. The degree of distortion was highly variable. Of the polymorphic markers, approximately 10% showed no distortion at all behaving as expected for single-dose markers, and another 30% showed low distortion and could be considered high-quality. The genotyped markers were incorporated into diploid and tetraploid genetic maps of Arachis and, in the latter case, were located almost entirely on A genome linkage groups.
Structural variations in plant genomes
Saxena RK, Edwards D and Varshney RK (2014). Structural variations in plant genomes. Briefings in Functional Genomics 13(4):296-307 (DOI: 10.1093/bfgp/elu016).
Abstract: Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs in plants. Many recent advances in plant genetics have resulted from improvements in high-resolution technologies for measuring SVs, including microarray-based techniques, and more recently, high-throughput DNA sequencing. In this review we describe recent reports of SV in plants and describe the genomic technologies currently used to measure these SVs.
Saxena RK, Edwards D and Varshney RK (2014). Structural variations in plant genomes. Briefings in Functional Genomics 13(4):296-307 (DOI: 10.1093/bfgp/elu016).
Abstract: Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs in plants. Many recent advances in plant genetics have resulted from improvements in high-resolution technologies for measuring SVs, including microarray-based techniques, and more recently, high-throughput DNA sequencing. In this review we describe recent reports of SV in plants and describe the genomic technologies currently used to measure these SVs.
Selection of sorghum hybrids grown under aluminum saturation
Menezes CB, Carvalho Junior GA, Silva LA, Bernardino KC, Magalhães JV, Guimarães CT, Guimarães LJM and Schaffert RE (2014). Selection of sorghum hybrids grown under aluminum saturation. Genetics and Molecular Research 13(3):5964–5973 (DOI: 10.4238/2014.August.7.12).
Abstract: The purpose of this study was to evaluate 165 hybrids derived from lines previously selected for aluminum (Al) tolerance. Nine check cultivars were used, eight commercial hybrids and one experimental hybrid. Hybrids were evaluated at three levels of Al saturation (0, 20 and 40% on average). The differences between the environments were significant. Environment with 0% Al saturation yielded 29.5% more than that with 40% Al saturation, showing the importance of genotype selection for acid soils. The best check cultivar was the hybrid DKB550. The hybrids AG1020 and AG1040 also performed well, where the latter was more tolerant but the former more responsive to environment improvement. The hybrid BRS304 was susceptible to high levels of Al saturation. The three commercial BRS hybrids (BRS310, BRS330 and BRS332) performed better than BRS304 at high Al saturation. The hybrid BRS330 was the best BRS hybrid to grow on a field with high Al saturation. The hybrid DKB559 performed well at high Al saturation but did not respond to environment improvement. The hybrids 727029, 727039, 729041, 729095, 729109, AG1040, and DKB550 were tolerant to higher levels of Al saturation and responsive to environment improvement, and showed good stability and adaptability at both low and high Al saturation.
Menezes CB, Carvalho Junior GA, Silva LA, Bernardino KC, Magalhães JV, Guimarães CT, Guimarães LJM and Schaffert RE (2014). Selection of sorghum hybrids grown under aluminum saturation. Genetics and Molecular Research 13(3):5964–5973 (DOI: 10.4238/2014.August.7.12).
Abstract: The purpose of this study was to evaluate 165 hybrids derived from lines previously selected for aluminum (Al) tolerance. Nine check cultivars were used, eight commercial hybrids and one experimental hybrid. Hybrids were evaluated at three levels of Al saturation (0, 20 and 40% on average). The differences between the environments were significant. Environment with 0% Al saturation yielded 29.5% more than that with 40% Al saturation, showing the importance of genotype selection for acid soils. The best check cultivar was the hybrid DKB550. The hybrids AG1020 and AG1040 also performed well, where the latter was more tolerant but the former more responsive to environment improvement. The hybrid BRS304 was susceptible to high levels of Al saturation. The three commercial BRS hybrids (BRS310, BRS330 and BRS332) performed better than BRS304 at high Al saturation. The hybrid BRS330 was the best BRS hybrid to grow on a field with high Al saturation. The hybrid DKB559 performed well at high Al saturation but did not respond to environment improvement. The hybrids 727029, 727039, 729041, 729095, 729109, AG1040, and DKB550 were tolerant to higher levels of Al saturation and responsive to environment improvement, and showed good stability and adaptability at both low and high Al saturation.
Seleção de linhagens de sorgo granífero eficientes e responsivas à aplicação de fósforo (Selection of grain sorghum lines efficient and responsive to phosphorus application)
Rodrigues F, Magalhães JV, Guimarães CT, Tardin FD and Schaffert RE (2014). Seleção de linhagens de sorgo granífero eficientes e responsivas à aplicação de fósforo (Selection of grain sorghum lines efficient and responsive to phosphorus application). Pesquisa Agropecuária Brasileira 49(8):613–621 (DOI: 10.1590/S0100-204X2014000800005). Article in Portuguese with abstract in English. (G7010.03.06)
Abstract: The objective of this work was to select sorghum lines simultaneously responsive to phosphorus fertilization and with high productive efficiency regarding this nutrient. Thirty six sorghum inbred lines were evaluated in a randomized complete block design, with two replicates. The traits used to evaluate the productive efficiency were average yield and efficiencies of absorption, utilization, and use of phosphorus, with and without phosphorus fertilization. For the analysis of the responsivity to the nutrient, the evaluated traits were relative yield and apparent recovery, physiological, and agronomic efficiencies. The lines were genetically divergent as to the efficiencies of absorption, utilization, and use of phosphorus, and to the responsivity to the nutrient, suggesting the possibility of producing hybrids destined to different market niches. The most responsive lines were P9401, BR007B, BR008B, SC414-12E, and SC566, and the most efficient ones under low phosphorus availability were ATF40B, SC566, BR005R, CMSXS225, and BR012 (R6). The ATF40B, ATF54 (f61), ATF54 (f596), QL3, and SC566 lines showed better simultaneous performance for the different evaluated efficiencies and for the responsivity to phosphorus. The evaluation of productivity alone, under different phosphorus availabilities, already makes it possible to identify efficient and responsive lines to phosphorus.
Rodrigues F, Magalhães JV, Guimarães CT, Tardin FD and Schaffert RE (2014). Seleção de linhagens de sorgo granífero eficientes e responsivas à aplicação de fósforo (Selection of grain sorghum lines efficient and responsive to phosphorus application). Pesquisa Agropecuária Brasileira 49(8):613–621 (DOI: 10.1590/S0100-204X2014000800005). Article in Portuguese with abstract in English. (G7010.03.06)
Abstract: The objective of this work was to select sorghum lines simultaneously responsive to phosphorus fertilization and with high productive efficiency regarding this nutrient. Thirty six sorghum inbred lines were evaluated in a randomized complete block design, with two replicates. The traits used to evaluate the productive efficiency were average yield and efficiencies of absorption, utilization, and use of phosphorus, with and without phosphorus fertilization. For the analysis of the responsivity to the nutrient, the evaluated traits were relative yield and apparent recovery, physiological, and agronomic efficiencies. The lines were genetically divergent as to the efficiencies of absorption, utilization, and use of phosphorus, and to the responsivity to the nutrient, suggesting the possibility of producing hybrids destined to different market niches. The most responsive lines were P9401, BR007B, BR008B, SC414-12E, and SC566, and the most efficient ones under low phosphorus availability were ATF40B, SC566, BR005R, CMSXS225, and BR012 (R6). The ATF40B, ATF54 (f61), ATF54 (f596), QL3, and SC566 lines showed better simultaneous performance for the different evaluated efficiencies and for the responsivity to phosphorus. The evaluation of productivity alone, under different phosphorus availabilities, already makes it possible to identify efficient and responsive lines to phosphorus.
Root hydraulics: The forgotten side of roots in drought adaptation
Vadez V (2014). Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Research 165:15–24 (DOI: 10.1016/j.fcr.2014.03.017). (G6007.01)
Vadez V (2014). Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Research 165:15–24 (DOI: 10.1016/j.fcr.2014.03.017). (G6007.01)
Response of maize top cross hybrids to low phosphorus in acid soils of western Kenya
Ligeyo DO, Ouma E, Gudu S, Kisinyo PO, Matonyei T, Okalebo JR and Othieno CO (2014). Response of maize top cross hybrids to low phosphorus in acid soils of western Kenya. East African Agricultural and Forestry Journal 80(1):25-30. Not open access. (G 7010.03.05)
Ligeyo DO, Ouma E, Gudu S, Kisinyo PO, Matonyei T, Okalebo JR and Othieno CO (2014). Response of maize top cross hybrids to low phosphorus in acid soils of western Kenya. East African Agricultural and Forestry Journal 80(1):25-30. Not open access. (G 7010.03.05)
QTL mapping for leaf senescence-related traits in common wheat under limited and full irrigation
Li X-M, He Z-H, Xiao Y-G, Xia X-C, Trethowan R, Wang H-J and Chen X-M (2014). QTL mapping for leaf senescence-related traits in common wheat under limited and full irrigation. Euphytica Published online: 2 November 2014 (DOI 10.1007/s10681-014-1272-4). Not open access; view abstract. (G7010.02.01)
Li X-M, He Z-H, Xiao Y-G, Xia X-C, Trethowan R, Wang H-J and Chen X-M (2014). QTL mapping for leaf senescence-related traits in common wheat under limited and full irrigation. Euphytica Published online: 2 November 2014 (DOI 10.1007/s10681-014-1272-4). Not open access; view abstract. (G7010.02.01)
QTL analysis of fertile spike number in wheat
Ma H, Dong F, Liang Z, Wang S, Wang H, Jing R and Sun D (2014). QTL analysis of fertile spike number in wheat. Journal of Agriculture 4(4):5−8. Article in Chinese with abstract in English. Not open access; view journal website. (G7010.02.01)
Ma H, Dong F, Liang Z, Wang S, Wang H, Jing R and Sun D (2014). QTL analysis of fertile spike number in wheat. Journal of Agriculture 4(4):5−8. Article in Chinese with abstract in English. Not open access; view journal website. (G7010.02.01)
Physiological and molecular analysis of aluminium tolerance in selected Kenyan maize lines
Matonyei TK, Cheprot RK, Liu J, Piñeros MA, Shaff JE, Gudu S, Were B, Magalhaes JV and Kochian LV (2014). Physiological and molecular analysis of aluminium tolerance in selected Kenyan maize lines. Plant and Soil 377(1–2):357–367 (DOI: 10.1007/s11104-013-1976-6). Not open access; view abstract. (G 7010.03.05)
Matonyei TK, Cheprot RK, Liu J, Piñeros MA, Shaff JE, Gudu S, Were B, Magalhaes JV and Kochian LV (2014). Physiological and molecular analysis of aluminium tolerance in selected Kenyan maize lines. Plant and Soil 377(1–2):357–367 (DOI: 10.1007/s11104-013-1976-6). Not open access; view abstract. (G 7010.03.05)