Journal articles 2012
Documents
Whole-genome scanning for mapping determinacy in Pigeonpea (Cajanus spp.)
Mir RR, Saxena RK, Saxena KB, Upadhyaya HD, Kilian A, Cook DR, Varshney RK (2012). Whole-genome scanning for mapping determinacy in Pigeonpea (Cajanus spp.). Plant Breeding Published online. (DOI: 10.1111/j.1439-0523.2012.02009.x). View abstract
Mir RR, Saxena RK, Saxena KB, Upadhyaya HD, Kilian A, Cook DR, Varshney RK (2012). Whole-genome scanning for mapping determinacy in Pigeonpea (Cajanus spp.). Plant Breeding Published online. (DOI: 10.1111/j.1439-0523.2012.02009.x). View abstract
Water uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (Oryza sativa)
Gowda VRP, Henry A, Vadez V, Shashidhar HE, Serraj R (2012). Water uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (Oryza sativa). Functional Plant Biology 39(5):402–411. (DOI: 10.1071/FP12015). (G3008.06). Not open access: view abstract
Gowda VRP, Henry A, Vadez V, Shashidhar HE, Serraj R (2012). Water uptake dynamics under progressive drought stress in diverse accessions of the OryzaSNP panel of rice (Oryza sativa). Functional Plant Biology 39(5):402–411. (DOI: 10.1071/FP12015). (G3008.06). Not open access: view abstract
Water extraction and root traits in Oryza sativa × Oryza glaberrima introgression lines under different soil moisture regimes
Kijoji AA, Nchimbi-Msolla S, Kanyeka ZL, Klassen SP, Serraj R, Henry A (2012). Water extraction and root traits in Oryza sativa × Oryza glaberrima introgression lines under different soil moisture regimes. Functional Plant Biology 40:54–66. (DOI: 10.1071/FP12163). (G3008.06). Not open access: view abstract
Kijoji AA, Nchimbi-Msolla S, Kanyeka ZL, Klassen SP, Serraj R, Henry A (2012). Water extraction and root traits in Oryza sativa × Oryza glaberrima introgression lines under different soil moisture regimes. Functional Plant Biology 40:54–66. (DOI: 10.1071/FP12163). (G3008.06). Not open access: view abstract
The protein kinase PSTOL1 from traditional rice confers tolerance of phosphorus deficiency
Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M & Heuer S (2012). The protein kinase PSTOL1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535–539. (DOI: 10.1038/nature11346). Not open access: view abstract online
Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M & Heuer S (2012). The protein kinase PSTOL1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535–539. (DOI: 10.1038/nature11346). Not open access: view abstract online
The future of grain legumes in cropping systems
Sinclair TR, Vadez V (2012). The future of grain legumes in cropping systems. Crop and Pasture Science 63, 501–512. (http://dx.doi.org/10.1071/CP12128). Not open access: view abstract
Sinclair TR, Vadez V (2012). The future of grain legumes in cropping systems. Crop and Pasture Science 63, 501–512. (http://dx.doi.org/10.1071/CP12128). Not open access: view abstract
The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits
Leal-Bertioli SCM, Bertioli DJ, Guimarães PM, Pereira TD, Galhardo I, Silva JP, Brasileiro ACM, Oliveira RS, Silva PIT, Vadez V, Araujo ACG (2012). The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environmental and Experimental Botany, Volume 84: 17–24. (DOI: 10.1016/j.envexpbot.2012.04.005.) (G6010.01)
Cultivated peanut is an allotetraploid (genome type AABB) with a very narrow genetic base, therefore wild species are an attractive source of new variability and traits. Because most wild species are diploid, the first step of introgression usually involves hybridization of wild species and polyploidization to produce a synthetic allotetraploid (AABB) that is sexually compatible with peanut. This study investigates drought- related traits such as leaf morphology, transpiration profile, chlorophyll meter readings (SCMR), specific leaf area (SLA) and transpiration rate per leaf area for two wild diploids (Arachis duranensis and Arachis ipaënsis) that could be of interest for improvement of the peanut crop. Furthermore, the inheritance of the traits from the diploid to the tetraploid state was investigated. Results showed that whilst some diploid traits such as SCMR, are maintained through hybridization and polyploidization, most characters, such as the leaf area, stomata size, trichome density and transpiration profile, are substantially modified. The study concludes that direct evaluations of drought-related traits in wild diploids may be useful for evaluation of wild species to be used in introgression. However, evaluations on wild-derived synthetic tetraploids are likely to be more informative.
Leal-Bertioli SCM, Bertioli DJ, Guimarães PM, Pereira TD, Galhardo I, Silva JP, Brasileiro ACM, Oliveira RS, Silva PIT, Vadez V, Araujo ACG (2012). The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environmental and Experimental Botany, Volume 84: 17–24. (DOI: 10.1016/j.envexpbot.2012.04.005.) (G6010.01)
Cultivated peanut is an allotetraploid (genome type AABB) with a very narrow genetic base, therefore wild species are an attractive source of new variability and traits. Because most wild species are diploid, the first step of introgression usually involves hybridization of wild species and polyploidization to produce a synthetic allotetraploid (AABB) that is sexually compatible with peanut. This study investigates drought- related traits such as leaf morphology, transpiration profile, chlorophyll meter readings (SCMR), specific leaf area (SLA) and transpiration rate per leaf area for two wild diploids (Arachis duranensis and Arachis ipaënsis) that could be of interest for improvement of the peanut crop. Furthermore, the inheritance of the traits from the diploid to the tetraploid state was investigated. Results showed that whilst some diploid traits such as SCMR, are maintained through hybridization and polyploidization, most characters, such as the leaf area, stomata size, trichome density and transpiration profile, are substantially modified. The study concludes that direct evaluations of drought-related traits in wild diploids may be useful for evaluation of wild species to be used in introgression. However, evaluations on wild-derived synthetic tetraploids are likely to be more informative.
The cassava genome: current progress, future directions
Prochnik S, Reddy Marri P, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2012). The cassava genome: current progress, future directions. Tropical Plant Biology published online: 7pp. (DOI 10.1007/s12042-011-9088-z).
Prochnik S, Reddy Marri P, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2012). The cassava genome: current progress, future directions. Tropical Plant Biology published online: 7pp. (DOI 10.1007/s12042-011-9088-z).
The banana (Musa acuminata) genome and the evolution of monocotyledonous plants
D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, MR, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci A-M, Weissenbach J, Ruiz M, Glaszmann J-C, Quétier F, Yahiaoui N & Wincker P (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410): 213–217. (DOI:10.1038/nature11241).
Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries1. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations2, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish)1. Pests and diseases have gradually become adapted, representing an imminent danger for global banana production3,4.
D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, MR, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci A-M, Weissenbach J, Ruiz M, Glaszmann J-C, Quétier F, Yahiaoui N & Wincker P (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410): 213–217. (DOI:10.1038/nature11241).
Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries1. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations2, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish)1. Pests and diseases have gradually become adapted, representing an imminent danger for global banana production3,4.
TaWIR1 contributes to post-penetration resistance to Magnaporthe oryzae, but not Blumeria graminis f. sp. tritici in wheat
Tufan HA, McGrann GRD, MacCormack R and Boyd LA (2012). TaWIR1 contributes to post-penetration resistance to Magnaporthe oryzae, but not Blumeria graminis f. sp. tritici in wheat. Molecular Plant Pathology 13(7):653–665 (DOI: 10.1111/j.1364-3703.2011.00775.x). Not open access; view abstract. (G3005.11)
Tufan HA, McGrann GRD, MacCormack R and Boyd LA (2012). TaWIR1 contributes to post-penetration resistance to Magnaporthe oryzae, but not Blumeria graminis f. sp. tritici in wheat. Molecular Plant Pathology 13(7):653–665 (DOI: 10.1111/j.1364-3703.2011.00775.x). Not open access; view abstract. (G3005.11)
Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences
Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimarães CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M, Margarido GRA, Oliveira BF, Schaffert RE, Garcia AAF, van Eeuwijk FA, Magalhães JV (2012). Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theoretical and Applied Genetics 14 pp, online first. Issn: 0040-5752. (DOI: 10.1007/s00122-012-1795-9). Not open access: view abstract
Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimarães CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M, Margarido GRA, Oliveira BF, Schaffert RE, Garcia AAF, van Eeuwijk FA, Magalhães JV (2012). Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theoretical and Applied Genetics 14 pp, online first. Issn: 0040-5752. (DOI: 10.1007/s00122-012-1795-9). Not open access: view abstract