Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Nov 062015
 

 

 Photo: C Schubert/CCAFSWhere to begin a decade-long story like that of the CGIAR Generation Challenge Programme (GCP)? This time-bound programme concluded in 2014 after successfully catalysing the use of advanced plant breeding techniques in the developing world.

Like all good tales, the GCP story had a strong theme: building partnerships in modern crop breeding for food security. It had a strong cast of characters: a palpable community of staff, consultants and partners from all over the world. And it had a formidable structure – two distinct phases split equally over the decade to first discover new plant genetic information and tools, and then to apply what the researchers learnt to breed more tolerant and resilient crops.

In October 2014, at the final General Research Meeting in Thailand, GCP Director Jean-Marcel Ribaut paid tribute to GCP’s cast and crew: “To all the people involved in GCP over the last 12 years, you are the real asset of the Programme,” he told them.

“In essence, our work has been all about partnerships and networking, bringing together players in crop research who may otherwise never have worked together,” says Jean-Marcel. “GCP’s impact is not easy to evaluate but it’s extremely important for effective research into the future. We demonstrated proofs of concept that can be scaled up for powerful results.”

A significant aspect of GCP’s legacy is the abundance of collaborations it forged and fostered between international researchers. A typical GCP project brought together public and private partners from both developing and developed nations and from CGIAR Centres. In all, more than 200 partners collaborated on GCP projects.

Photo: GCP

Just some of the extended GCP family assembled for the Programme’s final General Research Meeting in 2014.

The idea that the ‘community would pave the way towards success’ was always a key foundation of GCP, according to Dave Hoisington, who was involved with GCP from its conception and was latterly Chair of GCP’s Consortium Committee. “We designed GCP to provide opportunities for researchers to work together,” says Dave. He is a senior research scientist and program director at the University of Georgia, and was formerly Director of Research at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Director of the Genetic Resources Program and of the Applied Biotechnology Center at the International Maize and Wheat Improvement Center (CIMMYT).

“GCP was the mechanism that would help us to complete our mission – to tap into the rich genetic diversity of crops and package it so that breeding programme researchers could integrate it into their operations,” says Dave.

Photo: ICRISAT

A little girl tucks into sorghum porridge in Mali.

The dawn of a new generation

Food security in the developing world continues to be one of the greatest global challenges of our time. One in nine people worldwide – or more than 820 million people – go hungry every day.

Although this figure is currently diminishing, a changing global climate is making food production more challenging for farmers. Farmers need higher yielding crops that can grow with less water, tolerate higher temperatures and poorer soils, and resist pests and diseases.

The turn of the millennium saw rapid technological developments emerging in international molecular plant science. New tools and approaches were developed that enabled plant scientists, particularly in the developing world, to make use of genetic diversity in plants that was previously largely inaccessible to them. These tools had the potential to increase plant breeders’ capacity to rapidly develop crop varieties able to tolerate extreme environments and yield more in farmers’ fields.

Photo: J van de Gevel/Bioversity International

Wheat varieties in a field trial.

Dave was one scientist who early on recognised the significance and potential of this new dawn in plant science. In 2002, while working at CIMMYT, he teamed up with the Center’s then Director General, Masa Iwanaga, and its then Executive Officer for Research, Peter Ninnes – another long-term member of the GCP family who at the other end of the Programme’s lifespan became its Transition Manager. Together with a Task Force of other collaborators from CIMMYT, the International Rice Research Institute (IRRI) and IPGRI (now Bioversity International), they drafted and presented a joint proposal to form a CGIAR Challenge Programme – and so GCP was conceived.

The five CGIAR Challenge Programmes were the early precursors of the current CGIAR Research Programs. They introduced a new model for collaboration among CGIAR Research Centers and with external institutes, particularly national breeding programmes in developing countries.

A programme where the spirit is palpable

Photo: N Palmer/CIAT

Failed harvest: this Ghanaian farmer’s maize ears are undersized and poorly developed due to drought.

From the beginning, GCP had collaboration and capacity building at its heart. As encapsulated in its tagline, “partnerships in modern crop breeding for food security,” GCP’s aim was to bring breeders together and give them the tools to more effectively breed crops for the benefit of the resource-poor farmers and their families, particularly in marginal environments.

GCP’s primary focus on was on drought tolerance and breeding for drought-prone farming systems, since this is the biggest threat to food security worldwide – and droughts are already becoming more frequent and severe with climate change. However, the Programme made major advances in breeding for resilience to other major stresses in a number of different crops, including acid soils and important pests and diseases. It also sought improved yields and nutritional quality.

The model for the Programme was that it would work by contracting partner institutes to conduct research, initially through competitive projects and later through commissioning. These partnerships would ensure that GCP’s overall objectives were met. For Dave, GCP set the groundwork for modern plant breeding.

“GCP demonstrated that you can tap into genetic resources and that they can be valuable and can have significant impacts on breeding programmes,” he says.

“I think GCP started to guide the process. Without GCP, the adoption, testing and use of molecular technologies would probably have been delayed.”

Photo: Meena Kadri/Flickr (Creative Commons)

Harvesting wheat in India.

Masa Iwanaga, who is now President of the Japan International Research Center for Agricultural Sciences (JIRCAS), says that the key to the proposal and ultimate success of GCP was the focus on building connections between partners worldwide. “By providing the opportunity for researchers from developed countries to partner with researchers in developing countries, it helped enhance the capacity of national programmes in developing countries to use advanced technology for crop improvement.”

While not all partnerships were fruitful, Jean-Marcel has observed that those participants who invested in partnerships and built trust, understanding and communication produced some of the most successful results. “We created this amazing chain of people, stretching from the labs to the fields,” said Jean-Marcel, discussing the Programme in a 2012 interview.

“Perhaps the best way I can describe it is as a ‘GCP spirit’ created by the researchers we worked with.

“The Programme’s environment is friendly, open to sharing and is marked by a strong sense of community and belonging. The GCP spirit is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

Exploring gene banks to uncover genetic wealth

GCP started operations in 2004 and was designed in two five-year phases, 2004–2008 and 2009–2013. 2014 was a transition year for orderly closure.

Phase I focussed on upstream research to generate knowledge and tools for modern plant breeding. It mainly consisted of exploration and discovery projects, funded on a competitive basis, pursuing the most promising molecular research and high-potential partnerships.

“GCP’s first task was to go in and identify the genetic wealth held within the CGIAR gene banks,” says Dave Hoisington.

Photo: IITA

Gene bank samples give a small snapshot of cowpea diversity.

CGIAR’s gene banks were originally conceived purely for conservation, but breeders increasingly recognised the tremendous value of studying and utilising these collections. Over the years they were able to use gene banks as a valuable source of new breeding material, but were hampered by having to choose seeds almost blindly, with limited knowledge of what useful traits they might contain.

“We realised we could use molecular tools to help scan the genomes and discover genes in crops of interest and related species,” says Dave. “The genes we were most interested in were ones that helped increase yield in harsh environments, particularly under drought.”

By studying the genomes of wild varieties of wheat, for example, researchers found genes that increase wheat’s tolerance of water stress.

Photo: International Potato Center (CIP)

Sweetpotato diversity.

GCP-supported projects analysed naturally occurring genetic diversity to produce cloned genes, informative markers and reference sets for 21 important food crops. ‘Reference sets’, or ‘reference collections’ reduce search time for researchers: they are representative selections of a few hundred plant samples (‘accessions’) that encapsulate each crop’s genetic diversity, narrowed down from the many thousands of gene bank accessions available. The resources developed through GCP have already proved enormously valuable, and will continue to benefit researchers for years to come.

For example, researchers developed 52 new molecular (DNA) markers for sweetpotato to enable marker-assisted selection for resistance to sweet potato virus disease (SPVD). For lentils, a reference set of about 150 accessions was produced, a distillation down to 15 percent of the global collection studied. And for barley, 90 percent of all the different characteristics of barley were captured within 300 representative plant lines.

Photo: ICARDA

Harvesting barley in Ethiopia.

The leader of GCP’s barley research, Michael Baum, who directs the Biodiversity and Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA), says the reference set is a particular boon for a researcher new to barley.

“By looking at 300 lines, they see the diversity of 3,000 lines without any duplication,” says Michael. “This is much better and quicker for a plant breeder.”

Similarly, the lentil reference set serves as a common resource for ICARDA’s team of lentil breeders, facilitating efficient collaboration, according to Aladdin Hamweih of ICARDA, who was charged with developing the lentil collection for GCP.

“These materials can be accessed to achieve farming goals – to produce tough plants suitable for local environments. In doing this, we give farmers a greater likelihood of success, which ultimately leads to improving food security for the wider population,” Aladdin says.

An important aspect of the efforts within Phase I was GCP’s emphasis on developing genomic resources such as reference sets for historically under-resourced crops that had received relatively little investment in genetic research. These made up most of GCP’s target crops, and included: bananas and plantains; cassava; coconuts; common beans; cowpeas; chickpeas; groundnuts; lentils; finger, foxtail and pearl millets; pigeonpeas; potatoes; sorghum; sweetpotatoes and yams.

Although not all of these historically under-resourced crops continued to receive research funding into Phase II, the outcomes from Phase I provided valuable genetic resources and a solid basis for the ongoing use of modern, molecular-breeding techniques. Indeed, thanks to their GCP boost, some of these previously neglected species have become model crops for genetic and genomic research – even overtaking superstar crops such as wheat, whose highly complex genome hampers scientists’ progress.

Photo: N Palmer/CIAT

Banana harvest for sale in Rwanda.

A need to focus and deliver products

“Phase I provided plenty of opportunity for researchers to tap into genetic diversity,” says Jean-Marcel. “We opened the door for a lot of different topics which helped us to identify projects worth pursuing further, as well as identifying productive partnerships. But at the same time, we were losing focus by spreading ourselves too thinly across so many crops.”

This notion was confirmed by the authors of an external review conducted in 2008, commissioned by CGIAR. This recommended consolidating GCP’s research in order to optimise efficiency and increase outputs during GCP’s second phase, while also enhancing potential for longer term impact.

Transparency and a willingness to respond and adapt were always core GCP values. The Programme embraced external review throughout its lifetime, and was able to make dynamic changes in direction as the best ways to achieve impact emerged. Markus Palenberg, Managing Director of the Institute for Development Strategy in Germany, was a member of the 2008 evaluation panel.

“One major recommendation from the evaluation was to focus on crops and tools which would provide the greatest impact in terms of food security,” recounts Markus, who later joined GCP’s Executive Board. “This resulted in the Programme refocusing its research on only nine core crops.” These were cassava, beans, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat.

Photo: Mann/ILRI

Hard work: harvesting groundnut in Malawi.

GCP’s decision-making process on how to focus its Phase II efforts was partly guided by research the Programme had commissioned, documented in its Pathways to impact brief No 1: Where in the world do we start? This took global data on the number of stunted – i.e., severely malnourished – children, as a truer indicator of poverty than a monetary definition, and overlaid it on maps showing where drought was most likely to occur and have a serious impact on crop productivity. This combination of poverty and vulnerable harvests was used to determine the farming systems where GCP might have most impact.

The Programme also attempted to maintain a balance between types of crops, including each of the following categories: cereals (maize, rice, sorghum, wheat), legumes (beans, chickpeas, cowpeas, groundnuts), and roots and tubers (cassava).

The crops were organised into six crop- specific Research Initiatives (RIs) – legumes were consolidated into one – plus a seventh, Comparative Genomics, which focused on exploiting genetic similarities among rice, maize and sorghum to find and deploy sources of tolerance to acid soils.

Photo: IRRI

Child eating rice.

The research under the RIs built on GCP’s achievements in Phase I, moving from exploration to application. The change in focus was underpinned by the planned shift from competitive to commissioned projects, allowing the Programme to continue to support its strongest partnerships and research strands.

“The RIs focused on promoting the use of modern integrated breeding approaches, using both conventional and molecular breeding methods, to improve each crop through a series of specific projects undertaken in more than 30 countries,” says Jean-Marcel. “More importantly, the RIs were focused on creating new genetic material and varieties of plants that would ultimately benefit farmers.”

Such products released on the ground included new varieties of:

  • cassava resistant to several diseases, tolerant to drought, nutritionally enhanced to provide high levels of vitamin A, and with higher starch content for high-quality cassava flour and starch processing
  • chickpea tolerant to drought and able to thrive in semi-arid conditions, already providing improved food and income security for smallholder African farmers  – yields have doubled in Ethiopia – and set to help them supply growing demand for the legume in India
  • maize with higher yields, tolerant to high levels of aluminium in acid soils, resistant to disease, adapted to local conditions in Africa – and with improved phosphorus efficiency in the pipeline
  • rice with tolerance to drought and low levels of phosphorus in acid soils, disease resistance, high grain quality, and tolerance to soil salinity – with improved aluminium tolerance on the way too
Photo: CSISA

Harvesting rice in India.

Over the coming years, many more varieties developed through GCP projects are expected to be available to farmers, as CGIAR Research Centres and national programmes continue their work.

These will include varieties of:

  • common bean resistant to disease and tolerant to drought and heat, with higher yields in drier conditions – due for release in several African countries from 2015 onwards
  • cowpea resistant to diseases and insect pests, with higher yields, and able to tolerate worsening drought – set for release in several countries from 2015, to secure and improve harvests in sub-Saharan Africa
  • groundnut tolerant to drought and resistant to pests, diseases, and the fungi that cause aflatoxin contamination, securing harvests and raising incomes in some of the poorest regions of Africa
  • maize tolerant to drought and adapted to local conditions and tastes in Asia
  • sorghum that is even more robust and adapted to increasing drought in the arid areas of sub-Saharan Africa – plus sorghum varieties able to tolerate high aluminium levels in acid soils, set for imminent release
  • wheat with heat and drought tolerance – as well as improved yield and grain quality – for India and China, the two largest wheat producers in the world
Photo: N Palmer/CIAT

Groundnut harvest, Ghana.

Giving a voice to all the cast and crew

The 2008 external review also recommended slight changes in governance. It suggested GCP receive more guidance from two proposed panels: a Consortium Committee and an independent Executive Board.

Dave Hoisington, who chaired the Committee from 2010, succeeding the inaugural Chair Yves Savidan, explains: “GCP was not a research programme run by a single institute, but a consortium of 18 institutes. By having a committee of the key players in research as well as an independent board comprising people who had no conflict of interest with the Programme, we were able to make sure both the ‘players’ and ‘referees’ were given a voice.”

Jean-Marcel says providing this voice to everyone involved was an important facet of effective management. “Given that GCP was built on its people and partnerships, it was important that we restructured our governance to provide everyone with a representative to voice their thoughts on the Programme. We have always tried to be very transparent.”

The seven-member Executive Board was instated in June 2008 to provide oversight of the scientific strategy of the Programme. Board members had a wide variety of skills and backgrounds, with expertise ranging across molecular biology, development assistance, socioeconomics, academia, finance, governance and change management.

Andrew Bennett, who followed inaugural Chair Calvin Qualset into the role in 2009, has more than 45 years of experience in international development and disaster management and has worked in development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean.

“The Executive Board’s first role was to provide advice and to help the Consortium Committee and management refocus the Programme,” says Andrew.

Photo: IRRI

Rice seed diversity.

‘Advice’ and ‘helping’ are not usually words associated with how a Board works but, like so much of GCP’s ‘family’, this was not a typical board. Because GCP was hosted by CIMMYT, the Board did not have to deal with any policy issues; that was the responsibility of the Consortium Committee. As Andrew explains, “Our role was to advise on and help with decision-making and implementation, which was great as we were able to focus on the Programme’s science and people.”

Andrew has been impressed by what GCP has been able to achieve in its relatively short lifespan in comparison with other research programmes. “I think this programme has demonstrated that a relatively modest amount of money used intelligently can move with the times and help identify areas of potential benefit.”

Developing capacity and leadership in Africa

As GCP’s focus shifted from exploration and discovery to application and impact between Phases I and II, project leadership shifted too. More and more projects were being led by developing-country partners.

Harold Roy-Macauley, GCP Board member and Executive Director of the West and Central African Council for Agricultural Research and Development (WECARD), advised GCP about how to develop capacity, community and leadership among African partners so that products would reach farmers.

“The objective was to make sure that we were influencing development within local research communities,” says Harold. “GCP has played a very important role in creating synergies between the different institutions in Africa. Bringing the right people together, who are working on similar problems, and providing them with the opportunity to lead, has brought about change in the way researchers are doing research.”

In the early years of the Programme, only about 25 percent of the research budget was allocated to research institutes in developing countries; this figure was more than 50 percent in 2012 and 2013.

Jean-Marcel echoes Harold’s comments: “To make a difference in rural development – to truly contribute to improved food security through crop improvement and incomes for poor farmers – we knew that building capacity had to be a cornerstone of our strategy,” he says. Throughout its 10 years, GCP invested 15 percent of its resources in developing capacity.

“Providing this capacity has enabled people, research teams and institutes to grow, thrive and stand on their own, and this is deeply gratifying. It is very rewarding to see people from developing countries growing and becoming leaders,” says Jean-Marcel.

“For me, seeing developing-country partners come to the fore and take the reins of project leadership was one of the major outcomes of the Programme. Providing them with the opportunity, along with the appropriate capacity, allowed them to build their self-confidence. Now, many have become leaders of other transnational projects.”

Emmanuel Okogbenin and Chiedozie Egesi, two plant breeders at Nigeria’s National Root Crops Research Institute (NRCRI), are notable examples. They are leading an innovative new project using marker-assisted breeding techniques they learnt during GCP projects to develop higher-yielding, stress-tolerant cassava varieties. For this project, they are partnering with the Bill & Melinda Gates Foundation, Cornell University in the USA, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crops Resources Research Institute (NaCRRI).

Chiedozie says this would not have been possible without GCP helping African researchers to build their profiles. “GCP helped us to build an image for ourselves in Nigeria and in Africa,” he says, “and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Photo: IITA

Nigerian cassava farmer.

A ‘sweet and sour’ sunset

Photo: Daryl Marquardt/Flickr (Creative Commons)

Maize at sunset.

Jean-Marcel defined GCP’s final General Research Meeting in Thailand in 2014 as a ‘sweet-and-sour experience’.

Summing up the meeting, Jean-Marcel said, “It was sour in terms of GCP’s sunset, and sweet in terms of seeing you all here, sharing your stories and continuing your conversations with your partners and communities.”

From the outset, GCP was set up as a time-bound programme, which gave partners specific time limits and goals, and the motivation to deliver products. However, much of the research begun during GCP projects will take longer than 10 years to come to full fruition, so it was important for GCP to ensure that the research effort could be sustained and would continue to deliver farmer-focused outcomes.

During the final two years of the Programme, the Executive Board, Consortium Committee and Management Team played a large role in ensuring this sustainability through a thoroughly planned handover.

“We knew we weren’t going to be around forever, so we had a plan from early on to hand over the managerial reins to other institutes, including CGIAR Research Programs,” says Jean-Marcel.

One of the largest challenges was to ensure the continuity and future success of the Integrated Breeding Platform (IBP). IBP is a web-based, one-stop shop for information, tools and related services to support crop breeders in designing and carrying out integrated breeding projects, including both conventional and marker-assisted breeding methods.

While there are already a number of other analytical and data management breeding systems on the market, IBP combines all the tools that a breeder needs to carry out their day-to-day logistics, plan crosses and trials, manage and analyse data, and analyse and refine breeding decisions. IBP is also unique in that it is geared towards supporting breeders in developing countries – although it is already proving valuable to a wide range of breeding teams across the world. The Platform is set up to grow and improve as innovative ideas emerge, as users can develop and share their own tools.

Beyond the communities and relationships fostered by GCP community, Jean-Marcel sees IBP as the most important legacy of the Programme. “I think that the impact of IBP will be huge – so much larger than GCP. It will really have impact on how people do their business, and adopt best practice.”

While the sun is setting on GCP, it is rising for IBP, which is in an exciting phases as it grows and seeks long-term financial stability. The Platform is now independent, with its headquarters hosted at CIMMYT, and has established a number of regional hubs to provide localised support and training around the world, with more to follow.

It is envisaged that IBP will be invaluable to researchers in both developing and developed countries for many years to come, helping them to get farmers the crop varieties they need more efficiently. IBP is also helping to sustain some of the networks that GCP built and nurtured, as it is hosting the crop-specific Communities of Practice established by GCP.

2014 may be the end of GCP’s story but its legacy will live on. It will endure, of course, in the Programme’s scientific achievements – for many crops, genetic research and the effective use of genetic diversity in molecular breeding are just beginning, and GCP has helped to kick-start a long and productive scientific journey – and in the valuable tools brought together in IBP. And most of all, GCP’s character, communities and spirit will live on in all those who formed part of the GCP family.

For Chiedozie Egesi, the partnerships fostered by GCP have changed the way he does research: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons.

Fellow cassava breeder Elizabeth Parkes of Ghana agrees that GCP’s impact will be a lasting one: “All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

More links

Photo: E Hermanowicz/Bioversity International

Cowpea seeds dried in their pods.

Oct 192015
 

 

Photo: ICRISAT

Precious sorghum seed diversity.

Humans are a protective species. We like to hoard away our precious items in vaults and safes made of concrete and steel, safe from thieves and catastrophes.

One not-so-obvious precious item, which many people take for granted, is seed. Without seeds, farmers would not be able to grow the grains, legumes, vegetables and fruits we eat.

For centuries, farmers have harvested seeds to store and protect for planting the following year. Most of the time, farmers will only keep seeds harvested from plants that have excelled in their environment – that have produced high yields or have favourable qualities such as larger or tastier grain. This simple iterative process of selecting primarily for high yields means that many crops today are closely related genetically, which can make them more vulnerable to evolving diseases and pests.

Without diversity, a severe epidemic can completely wipe out a farmer’s crop — and even a whole region’s crop. One of the best-known historical examples of just such a disastrous crop failure is the Irish Potato Famine of the 19th century, when potato blight disease caused extensive death, human suffering and social upheaval. A number of crops around the world are in similar danger today, including wheat, threatened by the Ug99 strain of stem rust disease, to which almost all the world’s wheat is susceptible, and cassava, menaced by African cassava mosaic virus (ACMV).

The solution – genetic diversity

Plant breeders are looking at ways to increase diversity among cultivated crops, mitigating the risks of pests and diseases and introducing genes that help plants thrive in their local environments. To do this they are looking for useful traits in traditional cultivars, related species and wild ancestors. Such traits may include tolerance to drought, heat, and poor soils as well as insect and disease resistance. Breeders cross these donor parents with high-yielding elite breeding lines. The resulting new varieties have all the preferred traits of their parents and none of the deficiencies.

The genetic diversity of crops and their wild relatives is held by gene banks. There are thousands of gene banks worldwide, which collect and store seeds from hundreds of thousands of varieties. Breeders and researchers submit seed and tissue of wild and cultivated varieties as well as of lines of new varieties they are trying to breed.

Photo: IRRI

Staff hard at work in the medium-term storage room of the International Rice Genebank at IRRI.

“For years, gene banks were primarily repositories, but with genetics evolving, and its subsequent application in plant breeding growing over the past 10 years, breeders and geneticists are now mining gene banks for wild and exotic species that might have favourable genes for desired traits,” explains Ruaraidh Sackville Hamilton, evolutionary biologist and head of the International Rice Genebank maintained by the International Rice Research Institute (IRRI) at its headquarters in The Philippines.

Sifting through all these gene-bank collections for plants with desired traits is challenging for breeders, even for traits that are easy to select for through visual screening. For example, Ruaraidh says the rice collection held at the International Rice Genebank contains more than 117,000 different types of rice, or accessions.

In recognition of this challenge, the initial rationale of the CGIAR Generation Challenge Programme’s (GCP) genetic stocks activity was to make the diversity in gene banks more easily accessible and practical for the study – and application – of genetic diversity.

What is a genetic stock? “A genetic stock is a line that has been created by modern breeders and researchers, using conventional technologies, specifically to address some specified scientific purpose, typically for gene discovery,” explains Ruaraidh Sackville Hamilton, evolutionary biologist and head of the International Rice Genebank maintained by the International Rice Research Institute (IRRI). This definition includes the notion of perpetuation (a ‘line’), which is central to genetic stocks: either the materials are genetically stabilised through sexual reproduction, or they can be distributed through vegetative propagation.

Taking stock of genetic stocks

The first step towards making diversity accessible to breeders was to develop reference sets, representing as much genetic diversity as possible within a small proportion of gene bank accessions, selected through pedigree and molecular marker information.

“Reference sets reduce the number of choices that breeders have to search through, from thousands down to a few hundred,” says Jean Christophe Glaszmann, a plant geneticist at France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development), who held a managing role at GCP between 2004 and 2010, overseeing much of the reference-set work as GCP’s Subprogramme Leader on Genetic Diversity during GCP’s Phase I.

“A reference set represents the whole diversity found in the collections. Breeders can then use this sample to make crosses with their preferred varieties to try and integrate specific genes from the reference-set lines into those varieties.”

During the first phase of GCP (2004–2008), the Programme focused on identifying and characterising reference sets, each of roughly 300 lines, for banana, barley, cassava, chickpea, coconut, common bean, cowpea, faba bean, finger millet, foxtail millet, groundnut, lentil, maize, pearl millet, pigeonpea, potato, rice, sorghum, sweetpotato, wheat and yam. For most crops phenotyping data – information about physical plant traits – were also being made available for the reference sets, helping researchers to select material of interest for breeding.

Photo: P Kosina/CIMMYT

A trainee at the International Maize and Wheat Improvement Center (CIMMYT) shows off diverse wheat ears, a small sample of the thousands of different lines found in the centre’s gene bank.

A further aspect of the work was the development of data-kits, which included molecular markers used to genotype and verify the sets. These kits allow plant scientists to assess and compare the diversity of their own collections with that of the reference sets, thus facilitating the introduction of new diversity in their prebreeding programmes.

Jean Christophe says the reference sets and data-kits were pivotal to the success of GCP’s molecular-breeding projects as they allowed researchers in different institutes to simultaneously work on the same genetic materials. “The sets served as consistent reference material that everybody collaborating on the project could analyse,” he explains. “Some of these collaborations involved hundreds of researchers, particularly those projects seeking to map genomes and identify genes.”

During the second phase of GCP (2009–2014), the reference sets for GCP’s Phase II target crops (cassava, chickpea, common bean, cowpea, groundnut, maize, rice, sorghum and wheat) were thoroughly phenotyped under different environments, including biotic and abiotic stresses. Jean Christophe says this work helped to identify new alleles (alternative forms of a gene or genetic locus) associated with desired traits that could be used for breeding purposes. Reference sets have been used successfully to identify and use new plant material in breeding programmes to improve various traits, particularly disease resistance and even more complex traits such as drought tolerance in cassava, chickpea, cowpea, maize, sorghum and wheat.

Broadening groundnut’s genetic base to prevent disease

Photo: V Meadu/CCAFS

A farmer in Senegal shows off her groundnut crop, almost ripe for harvest.

Another objective of GCP’s genetic stocks activity was to create new diversity within domesticated cultivated crops that have narrow genetic diversity, such as groundnut.

“The groundnuts we grow today are not too dissimilar to the ones that were first created naturally five to six thousand years ago,” says David Bertioli, a plant geneticist at the University of Brasília, Brazil. “This means that they are genetically very similar and have a narrow genetic base – the narrowest of any cultivated crop.”

This genetic similarity means that all cultivated groundnuts are very susceptible to diseases, particularly leaf spot, requiring expensive agrochemicals, especially fungicides. Without agrochemicals, which smallholder farmers in Africa and Asia often cannot afford, yields can be very low.

David says groundnut breeders always recognised the need to increase diversity, but because cultivated groundnuts have had a narrow base for so long, they became radically different from their wild relatives, making it very difficult to successfully cross wild species with cultivated species.

New genetic diversity is created through recombination, that is, through crossing contrasting varieties to create novel lines. Researchers can study these recombinants to identify genes associated with desired traits or use them in further crosses to develop new varieties.

“One of our first jobs was to make wild-species recombinants to trace out the relatedness of the wild-species genomes,” says David. “Once we could see the relatedness, we could see which wild species we could cross with cultivated lines. We had to do a lot of these crosses, but we eventually started to broaden the genetic diversity of the cultivated lines.”

David says this painstaking work, carried out under GCP, also formed the platform for sequencing the groundnut genome for the first time.

“That gave us an even greater understanding of the genetic structure, which is laying the groundwork for new varieties with traits such as added disease resistance and drought tolerance,” says David.

An additional key outcome of the groundnut aspect of the Legumes Research Initiative was developing ‘wild × domesticated’ synthetic lines, which are being crossed with domesticated groundnut varieties in Malawi, Niger, Senegal and Tanzania to introduce higher drought tolerance.

Photo: C Schubert/CCAFS

Like many areas of Africa struck by climate change, this village in Tanzania is suffering the effects of drought, with temperature increases and increasingly unpredictable rainfall.

Genetic gain by exploiting genetic stocks

The genetic stocks activity has generated a large and diverse array of resources across GCP’s target crops, not just for groundnut.

Recombinant inbred lines (RILs) incorporating specific traits of interest – particularly drought tolerance – have been developed for cowpea, maize, rice, sorghum and wheat. RILs are stabilised genetic stocks, created over several years by crossing two inbred lines followed by repeated generations of sibling mating to produce inbred lines that are genetically identical. These can then be used to discover and verify the role of particular genes and groups of genes associated with desired traits.

Near-isogenic lines (NILs) are RILs that possess identical genetic codes, except for differences at a few specific genetic loci. This enables researchers to evaluate particular genes and groups of genes that they may want to incorporate into breeding lines, particularly genes that have come from plants that otherwise do not perform well agronomically, such as wild relatives or older varieties. Sorghum NILs incorporating the AltSB locus for aluminium tolerance are being tested in Burkina Faso, Mali and Niger on problematic acid soils.

Multiparent advanced generation intercross (MAGIC) populations are a form of recombinants developed from crossing several parental lines from different genetic origins and, in some cases, exotic backgrounds to maximise the mix of genes from the parental lines in the offspring. MAGIC populations have been developed for chickpea, cowpea, rice and sorghum, and are being developed for common bean. Selected parental lines have been used to combine elite alleles for simple traits such as aluminium tolerance in sorghum and submergence tolerance in rice, as well as for complex traits such as drought or heat tolerance.

The further evaluation and use of the genetic stocks stemming from GCP-supported projects, as well as the generation of new genetic stocks, will continue beyond GCP through CGIAR’s Research Programs as well as through those institutes and national breeding programmes associated with GCP. There will be a continuing and evolving need to identify new genes associated with desired traits to improve cultivated germplasm.

Photo: K Zaw/Bioversity International

Transplanting rice plants in Myanmar.

Sustaining genetic stocks into the future

Sustainability of genetic stocks has always been an issue, as stocks are generally not managed in a centralised way but are left under the direct responsibility of the scientists who developed them. These resources have therefore usually been handled in a highly ad hoc manner.

Because of high staff turnover in CGIAR Centers and breeding programmes in developing countries, and also because their management is neither centralised nor coordinated, these resources are also often lost as staff move from one organisation to another.

Although different genetic resources require different management protocols and storage timelines, the idea that gene bank curators take on the management of genetic stocks was proposed several years ago. For Centers such as IRRI, this is already a reality – for at least some of the genetic resources developed.

However, with the growing popularity of tapping into the rich diversity in gene banks that GCP’s genetic stocks activity has helped drive, gene bank supervisors such as Ruaraidh Sackville Hamilton are concerned about how genetic stocks will be sustained.

“The more popular molecular breeding and genetic stock become, the more funds we need to help us curate and disseminate them,” says Ruaraidh. He proposes to recover costs for managing genetic resources through a chargeback system on a two-tier scale, with non-profit organisations receiving stock at lower costs than commercial organisations. “Such a system would be sustainable and reduce the burden on gene bank institutes,” he says.

Still, the costs are of concern to institutes, particularly CGIAR Centers, which maintain most of the world’s plant crop gene banks.

CGIAR, a global partnership that unites 15 research Centres, including IRRI, is engaged in research for a food-secure future. CGIAR also created GCP. “CGIAR’s main priority is to conserve genetic resources for all humankind,” says Dave Hoisington, Senior Research Scientist and Program Director at the University of Georgia in the US. He was formerly Director of Research at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Director of the Genetic Resources Program and of the Applied Biotechnology Center at the International Maize and Wheat Improvement Center (CIMMYT) (both CGIAR Centers) and Chair of the GCP Consortium Committee.

“In both of the CGIAR Centers I worked in,” says Dave, “we always maintained the position that if the Center were to shut down, the last thing we’d do would be to turn out the lights of the gene bank. Even when we had funding cuts, we would never cut the budget for the gene bank.”

Photo: X Fonseca/CIMMYT

At work in the maize active collection in the gene bank at CIMMYT, which keeps maize and wheat diversity in trust for the world.

New programme to fund crop diversity

To alleviate some of the funding burden on CGIAR Centers and free up more money to use in research and development, CGIAR created a new CGIAR Research Program for Managing and Sustaining Crop Collections. The comprehensive five-year programme is managed by the Crop Trust (formerly Global Crop Diversity Trust).

“The Trust is a financial mechanism to raise an endowment, to ensure the conservation and availability of crop diversity,” says Charlotte Lusty, Genebank Programmes Coordinator at the Global Crop Diversity Trust. “The new programme is an extension of the Trust’s work. We aim to raise a USD 500 million endowment by 2016. The interest from this will be divided between the CGIAR Centers to cover all their long-term conservation operations.”

The new programme is also reviewing how gene banks within CGIAR are being managed, with a view to developing a quality management system, which it hopes will make gene banks run more efficiently. Charlotte says it is also encouraging stronger gene banks, such as IRRI and CIMMYT, to lend their expertise and experience to smaller gene banks so they can meet and build on their management quality.

Dave Hoisington believes that the new programme will provide CGIAR’s gene banks with greater capacity and make them even more attractive for researchers wanting to make use of their rich diversity.

Photo: IRRI

A wide diversity of rice seed from the collection of the International Rice Genebank at IRRI.

Looking forward 30 years

Tapping into new diversity was really at the heart of GCP, and was a major, if not the primary, rationale for its establishment. Over its 10-year lifespan, has invested almost USD 28 million, or 18 percent of its budget, in developing genetic stocks, both reference sets and recombinants, for over 20 different crops.

Although these products don’t directly benefit farmers, they do indirectly help by significantly increasing breeding efficiency.

“All this research is fairly new and I am amazed, as a geneticist and plant breeder, by how far we’ve come since GCP started in 2004,” says David Bertioli.

“What we’ve been able to do in groundnut – that is, broaden the genetic base – hasn’t occurred naturally or through conventional breeding for thousands of years. And we’ve been able to do it in less than ten years.”

David recognises that the true value of the research will only be realised when new disease-resistant varieties are available for farmers to grow, which may be in five to seven years. “Only then will we be able to look back and consider the worth of all the hard work and cooperation that went into developing these precious varieties.”

GCP’s genetic stock activities have generated a large and diverse array of resources. These resources lay the foundation for further genetic stock development and will aid in researchers’ quests to tap into genetic diversity well into the future.

More links

Oct 132015
 

 

Photo: N Palmer/CIAT

The vibrant colours of a cassava leaf.

Little did some of Ghana’s crop researchers know back in 2007 that they would be cultivating not just their plants but also themselves over the following seven years.

“When you see one person being trained and then another person being trained, it doesn’t mean much. But when you put all the numbers together and they see themselves as a force, as a team, I think that’s where new strength lies for our African researchers,” reflects Elizabeth Parkes on the impacts of the CGIAR Generation Challenge Programme (GCP).

Elizabeth is a cassava breeder in Ghana. She works for the Crops Research Institute (CRI) of Ghana’s Council for Scientific and Industrial Research (CSIR) and is currently on a leave of absence working at the International Institute of Tropical Agriculture (IITA).

“Wherever I go, whatever opportunity I have, I refer back to GCP and its capacity-building work. You see, it’s good to release new plant varieties, but it’s also good to release people,” she says.

The internationally funded GCP set out to enhance the local plant-breeding capabilities of people like Elizabeth, and so help developing nations meet ever-growing demands for food in the face of climate change and worsening drought conditions, the threat of crop disease, and other pressures.

Photo: N Palmer/CIAT

Scientists at the Crops Research Institute (CRI) work to improve crop production in Ghana and so ensure national food security and decent livelihoods for people like this Ghanaian cassava farmer.

This has meant empowering scientists with cutting-edge tools and knowledge, as well as overcoming some surprisingly down-to-earth obstacles.

“One thing that really energises me,” enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work and being given the chance to do the how.”

Hannibal, under his GCP remit, was asked to visit the research sites of GCP-funded projects at research centres and stations across Africa, to identify those where effective research might be hindered by significant gaps in three fundamental areas: infrastructure, equipment and support services. He selected 19 target research sites, in Burkina Faso, Ethiopia, Ghana, Kenya, Mali, Niger, Nigeria and Tanzania. Two of these were in Ghana, namely the CRI research sites at Kumasi and Tamale.

The mission of CRI is to ensure high and sustainable crop productivity and food security in Ghana through the development and dissemination of environmentally sound technologies. Its research areas are broad and include maize, rice, cowpeas, soybeans, groundnuts, cassava, yams, cocoyams, sweetpotatoes, plantains and bananas.

In developing countries like Ghana that the obstacles to achieving research objectives are often quite mundane in nature: a faulty weather station, a lack of irrigation systems, or fields ravaged by weeds or drainage problems and in dire need of rehabilitation. Yet such factors compromise brilliant research.

Even a simple lack of fencing commonly results not only in equipment being stolen, but also in precious experimental crops being stomped on by roaming cattle and wild animals such as boars, monkeys, hippopotamuses and hyenas; this also poses a serious threat to the safety of field staff.

“The real challenge lies not in the science, but rather in the real nuts and bolts of getting the work done in local field conditions,” Hannibal explains.

He says: “If GCP had not invested in research support infrastructure and services, then their investment in research would have been in vain. Tools and services must be in place as and when needed, and in good working order. Tractors must be able to plough when they should plough.”

Photo: N Palmer/CIAT

Cassava chips on sale in a Ghanaian market.

Ghana gains a new centre of excellence

CRI Ghana quote 1Elizabeth is one of more than 10 researchers from Ghana who gained their PhDs via GCP-funded research projects. They were given the opportunity to travel to international research laboratories to learn the latest research methods, train in genotyping and establish contacts with leading scientific minds.

“They [GCP] have made us attractive for others to collaborate with,” says Elizabeth.

“GCP gave you the keys to solving your own problems; it put structures in place so that knowledge learnt abroad could be transferred and applied at home.

“Before GCP we really struggled, but now everybody wants to have training in Ghana. Everybody wants to have something to do with us, and I will always say thank you to GCP for that, for making us attractive as researchers,” Elizabeth says.

At the outset of the Programme, Elizabeth was learning how to breed new cassava varieties suitable for African soils. She worked with scientists from IITA in Nigeria to use genetic resources (germplasm) from South America, where cassava originates, to integrate the CMD2 gene into local germplasm using molecular breeding. CMD2 gives cassava resistance to the devastating cassava mosaic disease, which slowly shrivels and yellows leaves and roots, destroying crop yields.

Photo: IITA

Elizabeth Parkes poses with a sturdy and nutritious harvest of cassava roots.

Cassava is a lifeline for African people, and is a particularly important staple food for poorer farmers. More cassava is produced in Africa than any other crop, according to 2012 figures from the Food and Agriculture Organization of the United Nations. It is grown by nearly every farming family in sub-Saharan Africa, supplying about a third of people’s daily energy intake in the region. This makes cassava mosaic disease a potential disaster, and makes effectively breeding improved varieties an activity with real impact.

“We started out doing low-cost marker-assisted selection, for which we had some grants. Someway, somehow, the government got interested and brought in more resources. So together we started a small biotech lab. Now this lab has become the Centre of Excellence for West African productivity,” says Elizabeth.

“I have attended three GCP Annual Research Meetings, and I have won awards for my posters. This greatly boosted my confidence,” says Elizabeth. She also continues to be an active member of the Cassava Community of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – which facilitates and supports the integration of marker-assisted selection into cassava breeding. All this has accelerated Elizabeth’s quest to produce and disseminate farmer-preferred cassava varieties that are resistant to pests and diseases.

“We are all forever grateful to GCP and its funders. GCP has had a huge impact on research in Ghana, especially for cassava, rice, maize and yam. All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

Capacity building à la carte a real ‘life changer’

For Allen Oppong, a maize pathologist at CRI, GCP was a life changer too: “Indeed, I am very grateful to GCP for making me what I am today.”

CRI Ghana quote 2Allen’s first experience of GCP was in 2007, when he won a Capacity building à la carte grant for research into characterising locally adapted maize varieties. During the project he travelled to international research meetings and received training in marker-assisted selection in advanced laboratories.

Infrastructure improvements funded by GCP also came at a critical time for Allen. There was a drought, which, without the irrigation systems provided through the Programme, would have meant a much longer research process.

Even without drought, these kinds of improvements can dramatically speed up breeding, as Hannibal explains: “By providing glasshouses or the capacity to irrigate in the dry season, we are enabling breeders to accelerate their breeding cycles, so that they can work all year round rather than having to wait until the rain comes.”

“Through the support of GCP,” Allen recalls, “I was able to characterise maize varieties found in Ghana using the bulk fingerprinting technique. This work has been published and I think it’s useful information for maize breeding in Ghana – and possibly other parts of the world.”

One of the biggest challenges that Allen experienced during his GCP work was getting farmers to try the new varieties that are being developed.

“Most people don’t like change. The new varieties are higher yielding, disease resistant, nutritious – all good qualities. But the challenge is demonstrating to farmers that these materials are better than what they have.

Photo: N Palmer/CIAT

A Ghanaian farmer holds a just-harvested maize ear.

“You can have very good material that has all these attributes, but if the farmer doesn’t have access to it, then how can he know the attributes that you are talking about? How can he see it when it is in your research station?”

Ghanaian farmers generally select maize varieties for their adaptation to specific local environments. But as Allen explains, average maize yields in Ghana, at 1–1.5 tonnes per hectare, are well below the global average of 5.2 tonnes per hectare.

Allen is looking forward optimistically to this next stage. “We have the capacity to more than double what we are producing now. The possibility is there, as long as farmers adopt the good materials.”

A ‘kick-start’ for plant science and for people

The catalytic effect of international funding programmes like GCP on small research laboratories in developing countries is often underestimated.

“We got GCP support to kick-start molecular biology research activities,” says Marian Quain, a senior research scientist at CRI. “It provided us with laboratory chemicals, reagent and equipment. My lab also received funding under the Genotyping Support Service initiative to characterise hundreds of sweetpotato, yam and cassava accessions.

“This support from GCP contributed immensely to transforming the lab.”

Ruth Prempeh – CRI researcher who was able to achieve her PhD with GCP support – hard at work collecting data in the field.

Ruth Prempeh – CRI researcher who was able to achieve her PhD with GCP support – hard at work collecting data in the field.

Funding injections can kick-start careers for young scientists too. In 2009, Ruth Prempeh received funding for her PhD, Genetic analysis of postharvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots, which was completed in 2013.

“From my thesis, l have prepared three manuscripts for publication. I have also had the opportunity to attend the three-year Integrated Breeding Multiyear Course, during which l acquired knowledge and skills in data analysis, interpretation and management and also in using modern technologies for crop improvement,” says Ruth.

“This has been very useful and has really had an impact on my career, making me what l am today. With this, l know l have a great future and I believe l will achieve great things. I am really proud to have been associated with GCP and very grateful for the opportunity.”

More links

Photo: William Haun/Flickr (Creative Commons)

Cassava flour on sale in Ghana.

Mar 062015
 

 

Photo: IITA

A woman holds yam tubers in her hands in a market in West Africa.

Yam production in West Africa is plagued by unsustainable and suboptimal practices. Most farmers continue to grow local varieties that produce poor yields – and also lack aesthetic qualities that appeal to consumers, such as smooth skin and elegant tuber shape.

For a better future and a sustainable food supply, farmers need access to improved yam varieties that can tolerate changes in the climate and environment, as well as resist pests and diseases. Adopting new practices will also help farmers to increase their yields.

Yams play a key role in the food security, income generation and sociocultural life of at least 60 million people in Africa, where more than 95 percent of the world’s yam supply is produced. Worldwide, the tuber vegetable is grown and consumed across the tropics and subtropics of Asia, the Caribbean, the Pacific, and West and Central Africa. Such is the reliance on yams in parts of Africa that communities hold annual festivals to revere and celebrate the crop. The Igbo people in Nigeria hold a ‘new yam harvest’ festival every year at the end of the rainy season in August or September, when the yams are ready for harvest. People in both Nigeria and Ghana hold the ‘new yam eating’ festival, also known as the ‘hoot at hunger’ festival, which symbolises the end of a harvest and the beginning of the next cropping cycle.

Despite the importance of yams in West Africa, breeding efforts for improved varieties have been limited for a number of reasons. One is that local yam cultivars have different names in different communities, making germplasm management and research difficult. Another obstacle is the constraints on yam growth – the plants have a long growth cycle and are highly susceptible to pests and diseases, poor soil, weeds and drought.

Photo: J Haskins/Global Crop Diversity Trust

Dancers celebrate at a new yam festival in Nigeria.

Unique collaborations get yam research rolling

Photo: J Haskins/Global Crop Diversity Trust

A farmer in his yam field in Nigeria.

In 2004, the CGIAR Generation Challenge Programme (GCP) recognised the need to provide resource-poor farmers in West Africa with yam varieties that combine high yields with drought tolerance, pest and disease resistance, and good tuber quality. The Programme was created to advance plant genetics for 21 crops, with a view to improving the resources and capabilities of local breeders in developing countries. Yams were one of the crops that received funding for the first half of the 10-year Programme.

Robert Asiedu, Principal Investigator for GCP’s project assessing the genetic diversity of yams in West Africa, says the Programme improved yam breeding through its unique collaborations.

“The work was brief but the partnership arrangement was useful,” says Robert, who is Director of Research for Development at the International Institute of Tropical Agriculture (IITA), based in Nigeria.

Photo: IITA

A Nigerian farmer displays her healthy yam tubers.

His GCP-funded team included researchers from Centre de coopération internationale en recherche agronomique pour le développement (Agropolis–CIRAD; Agricultural Research for Development) in France, the International Potato Center (CIP) headquartered in Peru, the International Centre for Tropical Agriculture (CIAT) based in Colombia, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) headquartered in India, Chile’s Instituto de Investigaciones Agropecuarias (INIA; Agricultural Research Institute), and the United States Department of Agriculture, plus experts in genome profiling and genetic analysis from Diversity Arrays Technology (DArT) in Australia. DArT provided high-throughput genotyping services that helped to profile yam’s genome.

Andrzej Kilian, DArT’s founder and director, says: “My company had a range of interactions with GCP, and I hope we had some positive impact on the outcomes.”

The researchers used molecular breeding tools – simple sequence repeat markers, or SSRs – to assess the genetic diversity of more than 500 yam accessions from Benin, DR Congo, Côte d’Ivoire, Equatorial Guinea, Gabon, Ghana, Nigeria, Sierra Leone and Togo. The assessment was a huge step forward in expanding the scientific knowledge of yam genetics, and ultimately in identifying suitable material for use in breeding programmes.

Photo: J Haskins/Global Crop Diversity Trust

Walking in yam fields.

IITA research scientist Maria Kolesnikova-Allen, also funded by GCP, says the yam work had two main objectives.

Photo: IITA

Yam vines twist up bamboo staking in a yam field.

“The primary focus of the first projects on yams involving molecular markers was to assess genetic diversity among yams originating from different West African countries and to find relationships between species. This information is important for future breeding and conservation efforts,” she says.

“Also, we were interested in confirming the use of molecular markers for analysis of yams and their potential use in breeding programmes.

“By confirming their usefulness in yam studies, we have offered a robust tool set for further studies on this crop.”

Photo: IITA

A trader displays clean and dried yam tubers at Bodija market, Ibadan, Nigeria.

As a result of the research, she says, “more knowledge and understanding has been achieved in terms of the genetic structure of yam populations in West and Central Africa, providing breeders with important knowledge for accessions selection to be included in breeding programmes.”

The genetic information that has been generated for yams will directly benefit countries in West Africa, according to Maria, “especially with IITA being positioned in the middle of the region and providing expert advice and dissemination of this information to local breeders and farmers.”

As part of her GCP-supported work, Maria supervised West African PhD students Jude Obidiegwu from Nigeria and Emmanuel Otoo from Ghana. Jude, a researcher at the National Root Crops Research Institute (NRCRI) in Nigeria, was responsible for GCP’s work on the genetic diversity of yams. His PhD assessed the genetic diversity of the West African yam collection.

African researchers carry GCP torch forward for yams

Jude is an example of how GCP focussed on fostering a base of experts on the ground in the countries where yams play an important role in people’s lives.

He was a participant in GCP’s Plant Genetic Diversity and Molecular Marker Assisted Breeding workshop held in Pretoria in June 2005. There he learned genomic DNA extraction methods, genetic and quantitative trait locus (QTL) mapping, development of core collections, and scientific proposal writing.

Photo: IITA

Woman counting money from the sales of yams at a yam market in Accra, Ghana.

“Our students at PhD level from Nigeria and Ghana were the main drivers of the projects at laboratory and field experiments level,” says Maria.

“Being involved in the projects allowed them to gain international exposure in their respective research fields and later advance their scientific career, becoming fully fledged yam scientists in their own right.

“If there be any hope of applying advanced genetics and genomics tools to the improvement of yam, it is researchers like Jude who will be the foot soldiers of that work in Africa.”

Photo: J Haskins/Global Crop Diversity Trust

A drummer adds his music to a new yam festival in Nigeria.

Maria feels there are strong foundations for further development of yam’s genetic resources after GCP’s sunset at the end of 2014.

“I would like to hope the future is bright,” she says. “As programmes for reducing hunger and poverty are multiplying and gaining momentum worldwide, I am sure the research on staple crops will be given much-needed financial support.

“I strongly believe in a partnership approach,” she maintains, drawing an analogy between GCP’s focus on crop genetics and the Human Genome Project that involved more than 300 partners collaborating between 1990 and 2003 to identify, map and sequence the human genome.

Robert agrees, forecasting that: “New projects will raise the capacity for yam breeding in West Africa by developing high-yielding and robust varieties of yams preferred by farmers and suited to market demands.”

Photo: IITA

A woman offers yam flour (known as elubo isu) for sale in Bodija market, Ibadan, Nigeria.