Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Oct 092015
 

 

Photo: IITA

Elizabeth Parkes

Elizabeth Parkes grew up in Ghana as the youngest child and only girl in a middle-class family of nine children. Through visiting poor communities with her family, she began from an early age to build her understanding of the lives of resource-poor families in this part of West Africa and their need for reliable and nutritious food.

She also knows first-hand the important role women play on a farm and in a family. “Rural families are held together by women, so if you are able to change their lot, you can make a real mark,” says Elizabeth.

It was this sense of social conscience that drew her to a career in agricultural research: “My father, a Regional Education Officer, was not very amused; he thought agricultural research was a man’s job!” she recalls.

But Elizabeth was on a mission. “I see African communities where poverty and hunger are seemingly huge problems with no way out,” she says. “If I put in enough effort, I can bring some solutions. My primary target group is the less privileged, and women in particular have been my friends throughout. This sometimes means subtly getting the men to consider some changes in roles.”

This sense of destiny led to Elizabeth gaining a Bachelor’s degree in Agriculture, a Diploma in Education and a Master’s in Crop Science.

Meet Elizabeth in the complete podcast below (or see a playlist on PodOmatic)  – and be inspired by her warmth and passion!

 

Photo: IITA

A worker in a Ghanaian cooperative producing garri, or gari, a kind of granular cassava flour used to prepare a range of foods.

Turning point: cassava to help the vulnerable

During a stint of national service between academic degrees, she was based in the tiny poor village of Aworowa in the Brong Ahafo Region. There was no electricity in her room, and the street lights came on once a week.

Photo: Tini Maier/Flickr (Creative Commons)

In a poor Ghanaian community everyone has to pitch in to the heavy daily round of chores.

“We all fetched water from the stream to drink and cook,” Elizabeth recalls. The plight of the villagers inspired Elizabeth to approach a scientist engaged in root and tuber projects at the Crops Research Institute (CRI) of Ghana’s Council for Scientific and Industrial Research (CSIR). She offered to carry out some research on cassava, hoping this might help the local people.

“I saw the struggle for households,” says Elizabeth. “I lived with them for one year, which transformed my interest and focus onto the vulnerable and less privileged.”

As a result, Elizabeth established CRI cassava trials in the region, and these trials continue today with Elizabeth still in touch with the villagers.

When her year of national service finished, Elizabeth was appointed as Assistant Research Officer at CRI – their first woman to be assigned to a research project. Already, she was beginning to fulfil her destiny.

Photo: IITA

Healthy cassava plants.

Challenges and opportunities

Photo: IITA

Unlike most crops, cassava is propagated, not by seed, but using cut sections of stem like these – just one of the many challenges this previously neglected crop offers breeders.

But cassava is not the easiest crop for a young researcher to cut their teeth on. It has long been regarded as an ‘orphan’ crop – one that researchers and funders have forgotten in their drive to work with the higher profile crops of wheat, rice and maize.

Cassava is a challenging crop for breeders to work with. “In addition to factors such as pests and disease, cassava is a long-season and very labour-intensive crop. It can take a whole year before you can expect to reap any rewards, and if you don’t have a strong team who can step in at different points throughout the breeding process, you can often find unexpected results at the end of it, and then you have to start all over again,” Elizabeth says.

But while many other young researchers gave up on with cassava, Elizabeth stuck with it, knowing the importance of this crop to farmers, especially women. And this is where Elizabeth’s involvement with the CGIAR Generation Challenge Programme (GCP) really started to make a difference to her future.

During GCP’s first research phase, Elizabeth’s path crossed with GCP scientist Martin Fregene, who encouraged Elizabeth to lead the Ghana partners involved in GCP’s cassava projects. She soon climbed the GCP research ranks, receiving multiple study grants, managing projects, and mixing and mingling with elite scientists. Along the way, Elizabeth also learnt new molecular breeding techniques. More recently, she was appointed Ghana’s lead researcher for GCP’s Phase II Cassava Research Initiative.

A place at the table, and sharing joy

Photo: IITA


Elizabeth Parkes examines a healthy crop of monster roots from an improved cassava variety.

Elizabeth believes the support GCP gave her to develop her skills and capacity is what has made a difference to her own and others’ destinies as research scientists: “GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner. I see GCP as the pace setters.

Elizabeth Parkes quote 2

“GCP gave you the keys to solving your own problems and put structures in place so that knowledge learnt abroad could be transferred and applied at home.

“When I first joined GCP,” Elizabeth recalls, “I saw myself as somebody from a national research programme being given a place at the table; my inputs were recognised and what I said carried weight in decision-making.”

Elizabeth has attended three GCP Annual (later General) Research Meetings and won awards for her posters. “This greatly boosted my confidence,” she says. She is an active member of the Cassava Community of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – which facilitates and supports the integration of marker-assisted selection into cassava breeding. All this has accelerated Elizabeth’s quest to produce and disseminate farmer-preferred cassava varieties that are resistant to pests and diseases.

Elizabeth Parkes quote 3“With the Community of Practice you can call on other scientists; you share talk, you share ideas, you share joy. We share everything together,” Elizabeth enthuses. ‘Joy’ is a word that is often on Elizabeth’s lips when she describes the help that GCP has given her and others.

“We are all forever grateful to GCP and its funders. GCP has had a huge impact on research in Ghana, especially for cassava, rice, maize and yam. All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

Photo: A Hoel/World Bank

A farmer in Benin transforms cassava into garri, or gari, used as the basis of many different dishes.

Elizabeth Parkes quoteIn less than a decade, Elizabeth has become a valued researcher at CRI (currently on secondment at the International Institute of Tropical Agriculture, IITA) as well as Ghana’s leading GCP-supported scientist working on cassava. But in fulfilling her own destiny, she’s also passionate about helping others to achieve their potential.

“Building human capacity is my greatest joy,” she says. Farmers, breeders and a Ghanaian private-sector company are just a few of the fortunate beneficiaries of her expertise over recent years.

“Wherever I go, whatever opportunity I have, I refer back to GCP and its capacity-building work. You see, it’s good to release new plant varieties, but it’s also good to release people who will do the job.”

Nurturing women

Photo: O Girard/CIFOR

Angelique Ipanga tends her cassava plants in the Democratic Republic of Congo. Cassava is often seen as a “women’s crop,” and the work of cultivating and preparing it falls largely on women’s shoulders.

Elizabeth talks about one of her favourite people, a farmer called Bea: “She’s very serious. She wants to learn more and she keeps expanding her farm.”

Bea hadn’t planted cassava before, so she pestered Elizabeth to find out more about how to do it properly. With Elizabeth’s guidance, Bea’s cassava-growing skills flourished, and she became so successful that she was recognised as the best farmer in her community.

“These are things that make me glad… that at least I have impacted somebody who hadn’t planted cassava before, and it’s amazing,” says Elizabeth. “There are people out there who need us, and when we give them our best, they will give the world their best as well.”

Elizabeth is also passionate about helping other women researchers: “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling.”

And so Elizabeth is now herself firmly established in world-class agricultural research, and further interesting stories are sure to follow.

“Before GCP we really struggled, but now everybody wants to have training in Ghana. Everybody wants to have something to do with us, and I will always say thank you to GCP for that, for making us attractive as researchers,” Elizabeth says.

“I’ve stuck with cassava because that’s my destiny! I may add other root and tuber crops, but cassava is my pivot.”

More links

Mar 042015
 

 

Photo: IRRI

A woman harvests rice in Ifugao, The Philippines.

Plant geneticist Sigrid Heuer remembers very clearly entering the transgenic greenhouse in Manila to see her postdoctoral student holding up a rice plant with ‘monster’ roots.

“They were enormous,” she recalls. “This is when I knew we had the right gene. It confirmed years of work. That was our eureka moment.

So massive was the effect of that gene that I knew we had the right one.”

This genetic discovery – described in more detail a little later – is one of the shining lights of the 10-year-long CGIAR Generation Challenge Programme (GCP) established in 2004.

GCP-supported researchers aimed high: they wanted to contribute to food security in the developing world by using the latest advances in crop science and plant breeding.

And with the lives of half of the world’s population directly reliant on their own agriculture, there is a lot at stake. Land degradation, salinity, pollution and excessive fertiliser use are just some of the challenges.

Rice is one of the most critical crops worldwide

Amelia Henry, drought physiology group leader at the International Rice Research Institute (IRRI), explains why rice was such a critical crop for GCP research. She says rice is grown in a diverse set of environmental settings, often characterised by severe flooding, poor soils and disease.

Photo: A Barclay/IRRI

Cycling through rice fields in Odisha, India.

In Asia, 40 percent of rice is produced in rainfed systems with little or no water control or protection from floods and droughts – meaning rice plants are usually faced with too much or too little water, and rarely get just enough. In addition, 60 percent (29 million hectares) of the rainfed lowland rice is produced on poor and problem soils, including those that are naturally low in phosphorus.

Phosphorus deficiency and aluminium toxicity are two of the most widespread environmental causes of poor crop productivity in acidic soils, where high acid levels upset the balance of available nutrients. And drought makes these problems even worse.

Phosphorus is essential for growing crops. Its commercial use in fertilisers is due to the need to replace the phosphorus that plants have extracted from the soil as they grow. Soils lacking phosphorus are an especially big problem in Africa, and the continent is a major user of phosphate fertilisers. However, inappropriate use of fertilisers can, ironically, acidify soil further, since excess nitrogen fertiliser decreases soil pH.

Meanwhile, high levels of aluminium in soil cause damage to roots and impair crop growth, reducing their uptake both of nutrients like phosphorus and of water – making plants more vulnerable to drought. Aluminium toxicity is a major limitation on crop production for more than 30 percent of farmland in Southeast Asia and South America and approximately 20 percent in East Asia, sub-Saharan Africa and North America.

Rice is a staple for nearly half of the world’s seven billion people, and global consumption is rising. More than 90 percent of all the rice produced is consumed in Asia, where it is a staple for 2.4 billion people – a majority of the population. Outside Asia, rice consumption continues to rise steadily, with the fastest growth in sub-Saharan Africa, where people are eating 50 percent more rice than they were two decades ago. More than 90 percent of the world’s rice is produced by farmers in six countries: China, India, Indonesia, Bangladesh, Vietnam and Japan. China and India account for nearly half of that, with an output of more than 700 million tonnes.

The challenge today is to tap into the genetic codes of key crops such as rice and wheat to feed a growing global population. Science plays a crucial role in identifying genes for traits that help plants tolerate more difficult environmental conditions, and producing crop varieties that contain these genes.

Plant biologists are already developing new rice lines that produce higher yields in the face of reduced water, increasingly scant fertiliser as costs rise, and unproductive soils. However, ‘super’ crops are needed that can combine these qualities and withstand climate changes such as increasing temperatures and reduced rainfall in a century when the world’s population is estimated to reach nearly 10 billion people by 2050.

Bringing the best scientific minds to improve rice varieties

Ambitious in concept, the GCP research focussed on bringing together experts to work on these critical problems of rice production for some of the world’s poorest farmers.

The programme was rolled out in two phases that sought to explore the genetic diversity of key crops and use the most important genes for valuable traits, such as Sigrid’s discovery made in a rice variety that is tolerant of phosphorus-poor soils. Each phase involved dedicated teams in partner countries.

GCP: a two-act tale Phase I (2004–08) involved ‘discovery’ projects for 21 crops: beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum, wheat, bananas (and plantains), barley, coconuts, finger millet, foxtail millet, lentils, pearl millet, pigeonpeas, potatoes, soya beans, sweetpotatoes and yams. Phase II (2009–14) focussed on nine of these 21: beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat.

GCP Principal Investigator Hei Leung, from IRRI, says GCP is unique, one of kind: “I love it.” He says GCP has enabled rice researchers and breeders to embrace cutting-edge science through partnerships focussed on improving crop yields in areas previously deemed unproductive.

Hei says GCP wanted to target research during its second phase on those crops that most poor people depend upon. “We wanted to have a programme that is what we call ‘pro-poor’, meaning the majority of the world’s people depends on those crops,” he says.

Rice is the ‘chosen one’ of GCP’s cereal crop research and development, with the biggest slice of GCP’s research activities dedicated to this, the most widely consumed staple food.

It is crucial to increase rice supplies by applying research and development such as that carried out by GCP researchers over the past 10 years, Hei says.

For more on the relationship between GCP and IRRI – and an extra sprinkling of salt on your rice (fields) – see our Sunset Story ‘Rice research reaps a rich harvest of products, people and partners’.

Relying on rice’s small genome in the hunt for drought-tolerance genes

Researchers had been trying to map the genomes of key cereal crops for over two decades. Rice’s genome was mapped in 2004, just as GCP started.

Rice has a relatively small genome, one-sixth the size of the maize genome and 40 times smaller than the wheat genome. This makes it a useful ‘model’ crop for researchers to compare with other crops.

“People like to compare with rice because wheat and maize have very big genomes, and they don’t have the resources,” explains Hei.

After the rice genome had been sequenced, the next step was to focus down to a more detailed level: the individual genes that give rice plants traits such as drought tolerance. Identifying useful genes, and markers that act as genetic ‘tags’ to point them out, gives scientists an efficient way to choose which plants to use in breeding.

One of GCP’s Principal Investigators for rice was Marie-Noëlle Ndjiondjop, a senior molecular scientist with the Africa Rice Center.

“Rice is becoming a very important crop in Africa,” she says. “Production has been reduced by a lot of constraints, and drought is one of the most important constraints that we face in Africa.”

Meet Marie-Noëlle below (or on YouTube), in our series of Q&A videos on rice research in Africa.

 

Marie-Noëlle’s team recognised that drought tolerance was likely to be a complex trait in rice, involving many genes, due to the mix of physiological, genetic and environmental components that affect how well a plant can tolerate drought conditions. To help discover the rice varieties likely to have improved drought tolerance, Marie-Noëlle’s team used an innovative approach known as bi-parental marker-assisted recurrent selection (MARS).

“With such a complex trait, you really need to have all the tools and infrastructure necessary; through GCP we were able to buy the necessary equipment and put in the infrastructure needed to find and test the drought trait in rice lines.

“By using the MARS approach we identified the genetic regions associated with drought and are moving towards developing new rice lines that the African breeder and farmer will be using in the next decade to grow crops that are better able to withstand drought conditions.”

Likewise, Amelia Henry’s IRRI team also developed drought-tolerant lines, particularly for drought-prone areas of South Asia. She says many of the promising deep-rooted or generally drought-tolerant varieties identified in the early decades after IRRI’s foundation in 1960 are still used today as ‘drought donors’.

“Since the strength of our project was the compilation of results from many different sites, this work couldn’t have been done without the GCP partners,” she says. “They taught me a lot about how rice grows in different countries and what problems rice farmers face.”

Hei agrees that GCP partnerships have been crucial, including in the successful breeding of rice with drought tolerance: “They’re getting a 1.5-tonne rice yield advantage under water stress. I mean, that’s unheard of! This is a crop that needs water.”

Photo: IRRI

A rice farmer in Rwanda.

But the researchers could not rest with just one of rice’s problems solved.

Hei says GCP’s initial focus on drought was a good one but then, “I remember saying, ‘We cannot just go for drought. Rice, like all crops, needs packages of traits’.”

He knows that drought is just one problem facing rice farmers, noting “this broadened our research portfolio to include seeking to breed rice varieties with traits of tolerance to aluminium toxicity, salt and poor soils.”

The scope widens: phosphorus-hungry rice and a huge success

Sigrid Heuer was in The Philippines working for IRRI when she became involved in the ground-breaking phosphorus-uptake project for rice.

She took over the project being headed by Matthias Wissuwa. Much earlier, Matthias had noted that Kasalath – a traditional northern Indian rice variety that grew successfully in low-phosphorus soil – must contain advantageous genes. His postdoctoral supervisor, Noriharu Ae, thought that longer roots were likely to be the secret to some rice varieties being able to tolerate phosphorus-deficient soils.

Matthias, now a senior scientist in the Crop, Livestock and Environment Division at the Japan International Research Center for Agricultural Sciences (JIRCAS), says that for a long time he was not sure if it was just long roots: “It was a real chicken-and-egg scenario – does strong phosphorus uptake spur root growth, or is it the other way around?”

Photo: IRRI

Screening for phosphorus-efficient rice, able to make the best of low levels of available phosphorus, on an IRRI experimental plot in The Philippines. Some types of rice have visibly done much better than others.

Sigrid Heuer used her background in molecular breeding to take up the challenge with GCP to find the genes responsible for the Kasalath variety’s long roots.

“I spent years looking for the gene,” Sigrid says. “It was like trying to find a needle in a haystack; the genomic region where the gene is located is very complex.

“We had little biogenomics support at the time and I had three jobs and two kids; I was spending all my nights trying to find this gene.”

Photo: IRRI

Sigrid Heuer in the field at IRRI.

But one day, Sigrid’s postdoctoral student Rico Gamuyao excitedly called her downstairs to the transgenic greenhouses. “Rico had used transgenic plants to see whether this gene had any effect. He was digging out plants from experimental pods.”

Sigrid says that moment in the Manila labs was the turning point for the project’s researchers.

Matthias’ team had previously identified a genomic region, or locus, named Pup1 (‘phosphorus uptake 1’) that was linked to phosphorus uptake in lines of traditional rice growing in poor soils. However, its functional mechanism remained elusive until the breakthrough GCP-funded project sequenced the locus, showing the presence of a Pup1-specific protein kinase gene, which was named PSTOL1 (‘phosphorus starvation tolerance 1’). The discovery was reported in the prestigious scientific journal Nature on 23 August 2012 and picked up by media around the world.

The gene instructs the plant to grow larger and longer roots, increasing its surface area – which Sigrid compares to having a bigger sponge to absorb more water and nutrients in the soil.

“Plants growing longer roots have more uptake of phosphorus – and PSTOL1 is responsible for this.

“GCP was always there, supporting us and giving us confidence, even when we weren’t sure we were going to succeed,” she recalls. “They really wanted us to succeed, so, financially and from a motivational point of view, this gave us more enthusiasm.”

She adds, jokingly, “With so many people having expectations about the project, it was better not to disappoint.”

For some insight straight from the source, listen to Matthias in our podcosts below. In these two bitesized chunks of wisdom he discusses the importance of phosphorus deficiency and of incorporating PSTOL1 into national breeding programmes; his work in Africa and the possibility of uncovering an African ‘Pup2; what the PSTOL1 discovery has meant for him; and the essential contribution of international partnerships and GCP’s support.


Photo: IRRI

Members of the IRRI PSTOL1, phosphorus uptake research team chat in the field in 2012. From left to right they are are: Sigrid Heuer, Cheryl Dalid, Rico Gamuyao, Matthias Wissuwa and Joong Hyoun Chin.

Phosphorus-uptake gene not all it seemed – an imposter?

But PSTOL1 was definitely not what it seemed. “It was identified under phosphorus-deficient conditions and the original screen was set up for that,” says Sigrid.

Researchers eventually discovered that Pup1 and the PSTOL1 gene within it were not really all about phosphorus at all: “It turns out it is actually a root-growth gene, which just happens to enhance uptake of phosphorus and other nutrients such as nitrogen and potassium.

“The result is big root growth and maintenance of that growth under stress. If you have improved root growth, there is more access to soil resources, as a plant can explore more soil area with more root fingers.”

Her team showed that overexpression of PSTOL1 gene significantly improves grain yield in varieties growing in phosphorus-deficient soil – by up to 60 percent compared to rice varieties that did not have the gene.

In field tests in Indonesia and The Philippines, rice with the PSTOL1 gene produced about 20 percent more grain than rice without the gene. This is important in countries where rice is grown in poor soils.

Photo: T Saputro/CIFOR

A farmer harvests rice in South Sulawesi, Indonesia.

Sigrid, now based in Adelaide at the Australian Centre for Plant Functional Genomics, says the introduction of the new gene into locally adapted rice varieties in different locations across Asia and Africa is expected to boost productivity under low-phosphorus conditions.

“The ultimate measure for these kinds of projects is whether a gene works in different environments. I think we have a lot of evidence that says it does,” she says.

The discovery of PSTOL1 promises to improve the food security of rice farmers on phosphorus-deficient land though assisting them to grow more rice and earn more.

Titbits of further research successes: aluminium tolerance and MAGIC genes

Drought, low-phosphorus soils, aluminium toxicity, diseases, acid soils, climate change… the list seems never-ending for challenges to growing rice. Apart from the successes with drought and phosphorus that GCP scientists achieved, there was to be much more in the works from other GCP researchers.

During GCP Phase I, a team led by Leon Kochian of Cornell University, USA, with colleagues at the Brazilian Corporation of Agricultural Research (EMBRAPA), JIRCAS and Moi University, Kenya, successfully identified and cloned a major sorghum aluminium-tolerance gene.

In Phase II, they worked towards breeding aluminium-tolerant sorghum lines for sub-Saharan Africa, as well as applying what they learnt to discover similar genes in rice and maize.

Hei Leung says GCP leaves a lasting legacy in the development of multiparent advanced generation intercross (MAGIC) populations. These help breeders to identify valuable genes, and from among the populations they can also select lines to use in breeding that have favourable traits, such as being tolerant to environmental stresses, having an ability to grow well in poor soils or being able to produce better quality grain.

“MAGIC populations will leave behind a very good resource towards improving different crop species,” says Hei. “I’m sure that they will expand on their own.”

GCP funded the development of four different MAGIC populations for rice, including both indica and japonica types. And the idea of developing MAGIC populations has spread to other crops, including chickpeas, cowpeas and sorghum.

For more on MAGIC see our Sunset Story ‘Rice research reaps a rich harvest of products, people and partners’.

Photo: IRRI

A farmer harvests rice in Nepal.

Meeting the challenges and delivering outcomes to farmers

But with success come the frustrations of getting there, according to Nourollah Ahmadi, GCP Product Delivery Coordinator for rice across Africa. “This is because things are not always going as well as you want.”

Nourollah, from Centre de coopération internationale en recherche agronomique pour le développement (Agropolis–CIRAD; Agricultural Research for Development), says sometimes he felt overwhelmed coordinating GCP’s rice projects because “the challenges were perhaps too big.”

Project Delivery Coordinators monitor projects first-hand, conducting on-site visits, advising project leaders and partners and helping them implement delivery plans.

“One of the problems was the overall level of basic education of people who were involved in the project,” Nourollah says.

Photo: L Hartless/ACDI VOCA/USAID

Rice cultivation in Mali is on the rise.

His work with GCP has opened up new prospects for some of the poorest farmers in the world: “For five years, I have been coordinating one of the rice initiatives implemented by the Africa Rice Center and involving three African countries.” These are Burkina Faso, Mali and Nigeria.

He says GCP has brought much-needed expertise and technical skills to countries which can now use genetic insights to produce improved crops tolerant of drought conditions and poor soils and resistant to diseases. Using new molecular-breeding techniques has provided a more effective way to move forward, still firmly focussed on helping the world’s poorest farmers achieve food security.

“We don’t change direction, we change tools – sometimes you have a bicycle, sometimes you have a car,” Nourollah says.

Hei agrees there have been challenges: “It’s been a bumpy road to get to this point. But the whole concept of getting all the national partners doing genetic resource characterisation is a very good one.

Right now they are enabled; they are not scared about the technology. They can apply it.”

Sigrid says applied research is judged on two scales: “One is the publications and science you’re doing. The other is whether the work has any impact in the field, whether it works in the field. Bringing these two together is sometimes a challenge.”

GCP has managed to meet both challenges. New crop varieties have been released to farmers, and more than 450 scientifically reviewed papers have been published since 2004.

Building on the rice success story and leaving a lasting legacy

The work that GCP-supported researchers have done for rice is also being used in other crops. For example, researchers used comparative genomics to determine if genes the same as or similar to those found in rice are present and operating in the same manner in sorghum and maize.

The GCP team found sorghum and maize varieties that contained genes, similar to rice’s PSTOL1, that also confer tolerance of phosphorus-deficient soil with an enhanced root system. They were then able to develop markers to help breeders in Brazil and Africa identify phosphorus-efficient lines.

Making the most of comparative genomics Over the last 20 years, genetic researchers all over the world have been mapping the genomes of various crops. A genome is the total of all genes that make up the genetic code of an individual. Genome maps are now being used by geneticists and plant breeders to identify similarities and differences between the genes of different crop species. This process is termed comparative genomics and was an important tool for GCP during its second phase (2008–2014).

The knowledge that GCP-supported rice researchers have generated is shared through communities of practice, through websites, publications, research meetings and the Integrated Breeding Platform.

As Amelia Henry notes, GCP’s achievements will be defined by “the spirit of dedication to openness with research data, results and germplasm and giving credit and support to partners in developing countries.” The work in rice in many ways exemplifies GCP’s collaborative approach, commitment to capacity building and deeply held belief that together we can go so much further in helping farmers.

Unlocking genetic diversity in crops for the resource-poor was at the heart of GCP’s mission, which in 2003 promised ‘a new, unique public platform for accessing and developing new genetic resources using new molecular technologies and traditional means’.

Certainly for poor rice farmers in Asia and Africa, the work that GCP has supported in applying the latest molecular-breeding techniques will lead to rice varieties that will help them produce better crops on poor soils in a changing climate.

Photo: A Erlangga/CIFOR

Rice farmers in Indonesia.

More links