Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Nov 062015
 

 

 Photo: C Schubert/CCAFSWhere to begin a decade-long story like that of the CGIAR Generation Challenge Programme (GCP)? This time-bound programme concluded in 2014 after successfully catalysing the use of advanced plant breeding techniques in the developing world.

Like all good tales, the GCP story had a strong theme: building partnerships in modern crop breeding for food security. It had a strong cast of characters: a palpable community of staff, consultants and partners from all over the world. And it had a formidable structure – two distinct phases split equally over the decade to first discover new plant genetic information and tools, and then to apply what the researchers learnt to breed more tolerant and resilient crops.

In October 2014, at the final General Research Meeting in Thailand, GCP Director Jean-Marcel Ribaut paid tribute to GCP’s cast and crew: “To all the people involved in GCP over the last 12 years, you are the real asset of the Programme,” he told them.

“In essence, our work has been all about partnerships and networking, bringing together players in crop research who may otherwise never have worked together,” says Jean-Marcel. “GCP’s impact is not easy to evaluate but it’s extremely important for effective research into the future. We demonstrated proofs of concept that can be scaled up for powerful results.”

A significant aspect of GCP’s legacy is the abundance of collaborations it forged and fostered between international researchers. A typical GCP project brought together public and private partners from both developing and developed nations and from CGIAR Centres. In all, more than 200 partners collaborated on GCP projects.

Photo: GCP

Just some of the extended GCP family assembled for the Programme’s final General Research Meeting in 2014.

The idea that the ‘community would pave the way towards success’ was always a key foundation of GCP, according to Dave Hoisington, who was involved with GCP from its conception and was latterly Chair of GCP’s Consortium Committee. “We designed GCP to provide opportunities for researchers to work together,” says Dave. He is a senior research scientist and program director at the University of Georgia, and was formerly Director of Research at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Director of the Genetic Resources Program and of the Applied Biotechnology Center at the International Maize and Wheat Improvement Center (CIMMYT).

“GCP was the mechanism that would help us to complete our mission – to tap into the rich genetic diversity of crops and package it so that breeding programme researchers could integrate it into their operations,” says Dave.

Photo: ICRISAT

A little girl tucks into sorghum porridge in Mali.

The dawn of a new generation

Food security in the developing world continues to be one of the greatest global challenges of our time. One in nine people worldwide – or more than 820 million people – go hungry every day.

Although this figure is currently diminishing, a changing global climate is making food production more challenging for farmers. Farmers need higher yielding crops that can grow with less water, tolerate higher temperatures and poorer soils, and resist pests and diseases.

The turn of the millennium saw rapid technological developments emerging in international molecular plant science. New tools and approaches were developed that enabled plant scientists, particularly in the developing world, to make use of genetic diversity in plants that was previously largely inaccessible to them. These tools had the potential to increase plant breeders’ capacity to rapidly develop crop varieties able to tolerate extreme environments and yield more in farmers’ fields.

Photo: J van de Gevel/Bioversity International

Wheat varieties in a field trial.

Dave was one scientist who early on recognised the significance and potential of this new dawn in plant science. In 2002, while working at CIMMYT, he teamed up with the Center’s then Director General, Masa Iwanaga, and its then Executive Officer for Research, Peter Ninnes – another long-term member of the GCP family who at the other end of the Programme’s lifespan became its Transition Manager. Together with a Task Force of other collaborators from CIMMYT, the International Rice Research Institute (IRRI) and IPGRI (now Bioversity International), they drafted and presented a joint proposal to form a CGIAR Challenge Programme – and so GCP was conceived.

The five CGIAR Challenge Programmes were the early precursors of the current CGIAR Research Programs. They introduced a new model for collaboration among CGIAR Research Centers and with external institutes, particularly national breeding programmes in developing countries.

A programme where the spirit is palpable

Photo: N Palmer/CIAT

Failed harvest: this Ghanaian farmer’s maize ears are undersized and poorly developed due to drought.

From the beginning, GCP had collaboration and capacity building at its heart. As encapsulated in its tagline, “partnerships in modern crop breeding for food security,” GCP’s aim was to bring breeders together and give them the tools to more effectively breed crops for the benefit of the resource-poor farmers and their families, particularly in marginal environments.

GCP’s primary focus on was on drought tolerance and breeding for drought-prone farming systems, since this is the biggest threat to food security worldwide – and droughts are already becoming more frequent and severe with climate change. However, the Programme made major advances in breeding for resilience to other major stresses in a number of different crops, including acid soils and important pests and diseases. It also sought improved yields and nutritional quality.

The model for the Programme was that it would work by contracting partner institutes to conduct research, initially through competitive projects and later through commissioning. These partnerships would ensure that GCP’s overall objectives were met. For Dave, GCP set the groundwork for modern plant breeding.

“GCP demonstrated that you can tap into genetic resources and that they can be valuable and can have significant impacts on breeding programmes,” he says.

“I think GCP started to guide the process. Without GCP, the adoption, testing and use of molecular technologies would probably have been delayed.”

Photo: Meena Kadri/Flickr (Creative Commons)

Harvesting wheat in India.

Masa Iwanaga, who is now President of the Japan International Research Center for Agricultural Sciences (JIRCAS), says that the key to the proposal and ultimate success of GCP was the focus on building connections between partners worldwide. “By providing the opportunity for researchers from developed countries to partner with researchers in developing countries, it helped enhance the capacity of national programmes in developing countries to use advanced technology for crop improvement.”

While not all partnerships were fruitful, Jean-Marcel has observed that those participants who invested in partnerships and built trust, understanding and communication produced some of the most successful results. “We created this amazing chain of people, stretching from the labs to the fields,” said Jean-Marcel, discussing the Programme in a 2012 interview.

“Perhaps the best way I can describe it is as a ‘GCP spirit’ created by the researchers we worked with.

“The Programme’s environment is friendly, open to sharing and is marked by a strong sense of community and belonging. The GCP spirit is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

Exploring gene banks to uncover genetic wealth

GCP started operations in 2004 and was designed in two five-year phases, 2004–2008 and 2009–2013. 2014 was a transition year for orderly closure.

Phase I focussed on upstream research to generate knowledge and tools for modern plant breeding. It mainly consisted of exploration and discovery projects, funded on a competitive basis, pursuing the most promising molecular research and high-potential partnerships.

“GCP’s first task was to go in and identify the genetic wealth held within the CGIAR gene banks,” says Dave Hoisington.

Photo: IITA

Gene bank samples give a small snapshot of cowpea diversity.

CGIAR’s gene banks were originally conceived purely for conservation, but breeders increasingly recognised the tremendous value of studying and utilising these collections. Over the years they were able to use gene banks as a valuable source of new breeding material, but were hampered by having to choose seeds almost blindly, with limited knowledge of what useful traits they might contain.

“We realised we could use molecular tools to help scan the genomes and discover genes in crops of interest and related species,” says Dave. “The genes we were most interested in were ones that helped increase yield in harsh environments, particularly under drought.”

By studying the genomes of wild varieties of wheat, for example, researchers found genes that increase wheat’s tolerance of water stress.

Photo: International Potato Center (CIP)

Sweetpotato diversity.

GCP-supported projects analysed naturally occurring genetic diversity to produce cloned genes, informative markers and reference sets for 21 important food crops. ‘Reference sets’, or ‘reference collections’ reduce search time for researchers: they are representative selections of a few hundred plant samples (‘accessions’) that encapsulate each crop’s genetic diversity, narrowed down from the many thousands of gene bank accessions available. The resources developed through GCP have already proved enormously valuable, and will continue to benefit researchers for years to come.

For example, researchers developed 52 new molecular (DNA) markers for sweetpotato to enable marker-assisted selection for resistance to sweet potato virus disease (SPVD). For lentils, a reference set of about 150 accessions was produced, a distillation down to 15 percent of the global collection studied. And for barley, 90 percent of all the different characteristics of barley were captured within 300 representative plant lines.

Photo: ICARDA

Harvesting barley in Ethiopia.

The leader of GCP’s barley research, Michael Baum, who directs the Biodiversity and Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA), says the reference set is a particular boon for a researcher new to barley.

“By looking at 300 lines, they see the diversity of 3,000 lines without any duplication,” says Michael. “This is much better and quicker for a plant breeder.”

Similarly, the lentil reference set serves as a common resource for ICARDA’s team of lentil breeders, facilitating efficient collaboration, according to Aladdin Hamweih of ICARDA, who was charged with developing the lentil collection for GCP.

“These materials can be accessed to achieve farming goals – to produce tough plants suitable for local environments. In doing this, we give farmers a greater likelihood of success, which ultimately leads to improving food security for the wider population,” Aladdin says.

An important aspect of the efforts within Phase I was GCP’s emphasis on developing genomic resources such as reference sets for historically under-resourced crops that had received relatively little investment in genetic research. These made up most of GCP’s target crops, and included: bananas and plantains; cassava; coconuts; common beans; cowpeas; chickpeas; groundnuts; lentils; finger, foxtail and pearl millets; pigeonpeas; potatoes; sorghum; sweetpotatoes and yams.

Although not all of these historically under-resourced crops continued to receive research funding into Phase II, the outcomes from Phase I provided valuable genetic resources and a solid basis for the ongoing use of modern, molecular-breeding techniques. Indeed, thanks to their GCP boost, some of these previously neglected species have become model crops for genetic and genomic research – even overtaking superstar crops such as wheat, whose highly complex genome hampers scientists’ progress.

Photo: N Palmer/CIAT

Banana harvest for sale in Rwanda.

A need to focus and deliver products

“Phase I provided plenty of opportunity for researchers to tap into genetic diversity,” says Jean-Marcel. “We opened the door for a lot of different topics which helped us to identify projects worth pursuing further, as well as identifying productive partnerships. But at the same time, we were losing focus by spreading ourselves too thinly across so many crops.”

This notion was confirmed by the authors of an external review conducted in 2008, commissioned by CGIAR. This recommended consolidating GCP’s research in order to optimise efficiency and increase outputs during GCP’s second phase, while also enhancing potential for longer term impact.

Transparency and a willingness to respond and adapt were always core GCP values. The Programme embraced external review throughout its lifetime, and was able to make dynamic changes in direction as the best ways to achieve impact emerged. Markus Palenberg, Managing Director of the Institute for Development Strategy in Germany, was a member of the 2008 evaluation panel.

“One major recommendation from the evaluation was to focus on crops and tools which would provide the greatest impact in terms of food security,” recounts Markus, who later joined GCP’s Executive Board. “This resulted in the Programme refocusing its research on only nine core crops.” These were cassava, beans, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat.

Photo: Mann/ILRI

Hard work: harvesting groundnut in Malawi.

GCP’s decision-making process on how to focus its Phase II efforts was partly guided by research the Programme had commissioned, documented in its Pathways to impact brief No 1: Where in the world do we start? This took global data on the number of stunted – i.e., severely malnourished – children, as a truer indicator of poverty than a monetary definition, and overlaid it on maps showing where drought was most likely to occur and have a serious impact on crop productivity. This combination of poverty and vulnerable harvests was used to determine the farming systems where GCP might have most impact.

The Programme also attempted to maintain a balance between types of crops, including each of the following categories: cereals (maize, rice, sorghum, wheat), legumes (beans, chickpeas, cowpeas, groundnuts), and roots and tubers (cassava).

The crops were organised into six crop- specific Research Initiatives (RIs) – legumes were consolidated into one – plus a seventh, Comparative Genomics, which focused on exploiting genetic similarities among rice, maize and sorghum to find and deploy sources of tolerance to acid soils.

Photo: IRRI

Child eating rice.

The research under the RIs built on GCP’s achievements in Phase I, moving from exploration to application. The change in focus was underpinned by the planned shift from competitive to commissioned projects, allowing the Programme to continue to support its strongest partnerships and research strands.

“The RIs focused on promoting the use of modern integrated breeding approaches, using both conventional and molecular breeding methods, to improve each crop through a series of specific projects undertaken in more than 30 countries,” says Jean-Marcel. “More importantly, the RIs were focused on creating new genetic material and varieties of plants that would ultimately benefit farmers.”

Such products released on the ground included new varieties of:

  • cassava resistant to several diseases, tolerant to drought, nutritionally enhanced to provide high levels of vitamin A, and with higher starch content for high-quality cassava flour and starch processing
  • chickpea tolerant to drought and able to thrive in semi-arid conditions, already providing improved food and income security for smallholder African farmers  – yields have doubled in Ethiopia – and set to help them supply growing demand for the legume in India
  • maize with higher yields, tolerant to high levels of aluminium in acid soils, resistant to disease, adapted to local conditions in Africa – and with improved phosphorus efficiency in the pipeline
  • rice with tolerance to drought and low levels of phosphorus in acid soils, disease resistance, high grain quality, and tolerance to soil salinity – with improved aluminium tolerance on the way too
Photo: CSISA

Harvesting rice in India.

Over the coming years, many more varieties developed through GCP projects are expected to be available to farmers, as CGIAR Research Centres and national programmes continue their work.

These will include varieties of:

  • common bean resistant to disease and tolerant to drought and heat, with higher yields in drier conditions – due for release in several African countries from 2015 onwards
  • cowpea resistant to diseases and insect pests, with higher yields, and able to tolerate worsening drought – set for release in several countries from 2015, to secure and improve harvests in sub-Saharan Africa
  • groundnut tolerant to drought and resistant to pests, diseases, and the fungi that cause aflatoxin contamination, securing harvests and raising incomes in some of the poorest regions of Africa
  • maize tolerant to drought and adapted to local conditions and tastes in Asia
  • sorghum that is even more robust and adapted to increasing drought in the arid areas of sub-Saharan Africa – plus sorghum varieties able to tolerate high aluminium levels in acid soils, set for imminent release
  • wheat with heat and drought tolerance – as well as improved yield and grain quality – for India and China, the two largest wheat producers in the world
Photo: N Palmer/CIAT

Groundnut harvest, Ghana.

Giving a voice to all the cast and crew

The 2008 external review also recommended slight changes in governance. It suggested GCP receive more guidance from two proposed panels: a Consortium Committee and an independent Executive Board.

Dave Hoisington, who chaired the Committee from 2010, succeeding the inaugural Chair Yves Savidan, explains: “GCP was not a research programme run by a single institute, but a consortium of 18 institutes. By having a committee of the key players in research as well as an independent board comprising people who had no conflict of interest with the Programme, we were able to make sure both the ‘players’ and ‘referees’ were given a voice.”

Jean-Marcel says providing this voice to everyone involved was an important facet of effective management. “Given that GCP was built on its people and partnerships, it was important that we restructured our governance to provide everyone with a representative to voice their thoughts on the Programme. We have always tried to be very transparent.”

The seven-member Executive Board was instated in June 2008 to provide oversight of the scientific strategy of the Programme. Board members had a wide variety of skills and backgrounds, with expertise ranging across molecular biology, development assistance, socioeconomics, academia, finance, governance and change management.

Andrew Bennett, who followed inaugural Chair Calvin Qualset into the role in 2009, has more than 45 years of experience in international development and disaster management and has worked in development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean.

“The Executive Board’s first role was to provide advice and to help the Consortium Committee and management refocus the Programme,” says Andrew.

Photo: IRRI

Rice seed diversity.

‘Advice’ and ‘helping’ are not usually words associated with how a Board works but, like so much of GCP’s ‘family’, this was not a typical board. Because GCP was hosted by CIMMYT, the Board did not have to deal with any policy issues; that was the responsibility of the Consortium Committee. As Andrew explains, “Our role was to advise on and help with decision-making and implementation, which was great as we were able to focus on the Programme’s science and people.”

Andrew has been impressed by what GCP has been able to achieve in its relatively short lifespan in comparison with other research programmes. “I think this programme has demonstrated that a relatively modest amount of money used intelligently can move with the times and help identify areas of potential benefit.”

Developing capacity and leadership in Africa

As GCP’s focus shifted from exploration and discovery to application and impact between Phases I and II, project leadership shifted too. More and more projects were being led by developing-country partners.

Harold Roy-Macauley, GCP Board member and Executive Director of the West and Central African Council for Agricultural Research and Development (WECARD), advised GCP about how to develop capacity, community and leadership among African partners so that products would reach farmers.

“The objective was to make sure that we were influencing development within local research communities,” says Harold. “GCP has played a very important role in creating synergies between the different institutions in Africa. Bringing the right people together, who are working on similar problems, and providing them with the opportunity to lead, has brought about change in the way researchers are doing research.”

In the early years of the Programme, only about 25 percent of the research budget was allocated to research institutes in developing countries; this figure was more than 50 percent in 2012 and 2013.

Jean-Marcel echoes Harold’s comments: “To make a difference in rural development – to truly contribute to improved food security through crop improvement and incomes for poor farmers – we knew that building capacity had to be a cornerstone of our strategy,” he says. Throughout its 10 years, GCP invested 15 percent of its resources in developing capacity.

“Providing this capacity has enabled people, research teams and institutes to grow, thrive and stand on their own, and this is deeply gratifying. It is very rewarding to see people from developing countries growing and becoming leaders,” says Jean-Marcel.

“For me, seeing developing-country partners come to the fore and take the reins of project leadership was one of the major outcomes of the Programme. Providing them with the opportunity, along with the appropriate capacity, allowed them to build their self-confidence. Now, many have become leaders of other transnational projects.”

Emmanuel Okogbenin and Chiedozie Egesi, two plant breeders at Nigeria’s National Root Crops Research Institute (NRCRI), are notable examples. They are leading an innovative new project using marker-assisted breeding techniques they learnt during GCP projects to develop higher-yielding, stress-tolerant cassava varieties. For this project, they are partnering with the Bill & Melinda Gates Foundation, Cornell University in the USA, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crops Resources Research Institute (NaCRRI).

Chiedozie says this would not have been possible without GCP helping African researchers to build their profiles. “GCP helped us to build an image for ourselves in Nigeria and in Africa,” he says, “and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Photo: IITA

Nigerian cassava farmer.

A ‘sweet and sour’ sunset

Photo: Daryl Marquardt/Flickr (Creative Commons)

Maize at sunset.

Jean-Marcel defined GCP’s final General Research Meeting in Thailand in 2014 as a ‘sweet-and-sour experience’.

Summing up the meeting, Jean-Marcel said, “It was sour in terms of GCP’s sunset, and sweet in terms of seeing you all here, sharing your stories and continuing your conversations with your partners and communities.”

From the outset, GCP was set up as a time-bound programme, which gave partners specific time limits and goals, and the motivation to deliver products. However, much of the research begun during GCP projects will take longer than 10 years to come to full fruition, so it was important for GCP to ensure that the research effort could be sustained and would continue to deliver farmer-focused outcomes.

During the final two years of the Programme, the Executive Board, Consortium Committee and Management Team played a large role in ensuring this sustainability through a thoroughly planned handover.

“We knew we weren’t going to be around forever, so we had a plan from early on to hand over the managerial reins to other institutes, including CGIAR Research Programs,” says Jean-Marcel.

One of the largest challenges was to ensure the continuity and future success of the Integrated Breeding Platform (IBP). IBP is a web-based, one-stop shop for information, tools and related services to support crop breeders in designing and carrying out integrated breeding projects, including both conventional and marker-assisted breeding methods.

While there are already a number of other analytical and data management breeding systems on the market, IBP combines all the tools that a breeder needs to carry out their day-to-day logistics, plan crosses and trials, manage and analyse data, and analyse and refine breeding decisions. IBP is also unique in that it is geared towards supporting breeders in developing countries – although it is already proving valuable to a wide range of breeding teams across the world. The Platform is set up to grow and improve as innovative ideas emerge, as users can develop and share their own tools.

Beyond the communities and relationships fostered by GCP community, Jean-Marcel sees IBP as the most important legacy of the Programme. “I think that the impact of IBP will be huge – so much larger than GCP. It will really have impact on how people do their business, and adopt best practice.”

While the sun is setting on GCP, it is rising for IBP, which is in an exciting phases as it grows and seeks long-term financial stability. The Platform is now independent, with its headquarters hosted at CIMMYT, and has established a number of regional hubs to provide localised support and training around the world, with more to follow.

It is envisaged that IBP will be invaluable to researchers in both developing and developed countries for many years to come, helping them to get farmers the crop varieties they need more efficiently. IBP is also helping to sustain some of the networks that GCP built and nurtured, as it is hosting the crop-specific Communities of Practice established by GCP.

2014 may be the end of GCP’s story but its legacy will live on. It will endure, of course, in the Programme’s scientific achievements – for many crops, genetic research and the effective use of genetic diversity in molecular breeding are just beginning, and GCP has helped to kick-start a long and productive scientific journey – and in the valuable tools brought together in IBP. And most of all, GCP’s character, communities and spirit will live on in all those who formed part of the GCP family.

For Chiedozie Egesi, the partnerships fostered by GCP have changed the way he does research: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons.

Fellow cassava breeder Elizabeth Parkes of Ghana agrees that GCP’s impact will be a lasting one: “All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

More links

Photo: E Hermanowicz/Bioversity International

Cowpea seeds dried in their pods.

Jun 222015
 
Photo: Joseph Hill/Flickr (Creative Commons)

Groundnut plants growing in Senegal.

Across Africa, governments and scientists alike are heralding groundnuts’ potential to lead resource-poor farmers out of poverty.

Around 5,000 years ago in the north of Argentina, two species of wild groundnuts got together to produce a natural hybrid. The result of this pairing is the groundnut grown today across the globe, particularly in Africa and Asia. Now, scientists are discovering the treasures hidden in the genes of these ancient ancestors.

Nearly half of the world’s groundnut growing area lies within the African continent, yet Africa’s production of the legume has, until recently, accounted for only 25 percent of global yield. Drought, pests, diseases and contamination are all culprits in reducing yields and quality. But through the CGIAR Generation Challenge Programme (GCP), scientists have been developing improved varieties using genes from the plant’s ancient ancestors. These new varieties are destined to make great strides towards alleviating poverty in some of the world’s most resource-poor countries.

Photo: Bill & Melinda Gates Foundation

A Ugandan farmer at work weeding her groundnut field.

A grounding in the history of Africa’s groundnuts

From simple bar snack in the west to staple food in developing countries, groundnuts – also commonly known as peanuts – have a place in the lives of many peoples across the world. First domesticated in the lush valleys of Paraguay, groundnuts have been successfully bred and cultivated for millennia. Today they form a billion-dollar industry in China, India and the USA, while also sustaining the livelihoods of millions of farming families across Africa and Asia.

Groundnut facts and figures •	About one-third of groundnuts produced globally are eaten and two-thirds are crushed for oil  •	The residue from oil processing is used as an animal feed and fertiliser •	Oils and solvents derived from groundnuts are used in medicines, textiles, cosmetics, nitro-glycerine, plastics, dyes, paints, varnishes, lubricating oils, leather dressings, furniture polish, insecticides and soap •	Groundnut shells are used to make plastic, wallboard, abrasives, fuel, cellulose and glue; they can also be converted to biodiesel

“The groundnut is one of the most important income-generating crops for my country and other countries in East Africa,” says Malawian groundnut breeder Patrick Okori, Principal Scientist at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), who was also GCP’s Product Delivery Coordinator for groundnuts.

“It’s like a small bank for many smallholder farmers, one that can be easily converted into cash, fetching the highest prices,” he says.

The situation is similar in West Africa, according to groundnut breeder Issa Faye from the Institut Sénégalais de Recherches Agricoles (ISRA; Senegalese Agricultural Research Institute), who has been involved in GCP since 2008. “It’s very important for Senegal,” he says. “It’s the most important cash crop here – a big source of revenue for farmers around the country. Senegal is one of the largest exporters of peanut in West Africa.”

Groundnuts have good potential for sustaining a strong African export industry in future, while providing a great source of nutrition for Africa’s regional farming families.

“We believe that by using what we have learnt through GCP, we will be able to boost the production and exportation of groundnuts from Senegal to European countries, and even to Asian countries,” says Issa. “So it’s very, very important for us.”

Photo: Joseph Hill/Flickr (Creative Commons)

Harvested groundnuts in Senegal.

How Africa lost its groundnut export market

Photo: V Vadez

Groundnuts in distress under drought conditions.

In Africa, groundnuts have mostly been grown by impoverished smallholder farmers, in infertile soils and dryland areas where rainfall is both low and erratic. Drought and disease cause about USD 500 million worth of losses to groundnut production in Africa every year.

“Because groundnut is self-pollinating, most of the time poor farmers can recycle the seed and keep growing it over and over,” Patrick says. “But for such a crop you need to refresh the seed frequently, and after a certain period you should cull it. So the absence of, or limited access to, improved seed for farmers is one of the big challenges we have. Because of this, productivity is generally less than 50 percent of what would be expected.”

Photo: S Sridharan/ICRISAT

Rosette virus damage to groundnut above and below ground.

Diseases such as the devastating groundnut rosette virus – which is only found in Africa and has been known to completely wipe out crops in some areas – as well as pests and preharvest seed contamination have all limited crop yields and quality and have subsequently shut out Africa’s groundnuts from export markets.

The biggest blow for Africa came in the 1980s from a carcinogenic fungal toxin known as aflatoxin, explains Patrick.

Photo: IITA

Aflatoxin-contaminated groundnut kernels from Mozambique.

Aflatoxin is produced by mould species of the genus Aspergillus, which can naturally occur in the soil in which groundnuts are grown. When the fungus infects the legume it produces a toxin which, if consumed in high enough quantities, can be fatal or cause cancer. Groundnut crops the world over are menaced by aflatoxin, but Africa lost its export market because of high contamination levels.

“That’s why a substantial focus of the GCP research programme has been to develop varieties of groundnuts with resistance to the fungus,” says Patrick.

After a decade of GCP support, a suite of new groundnut varieties representing a broad diversity of characteristics is expected to be rolled out in the next two or three years. This suite will provide a solid genetic base of resistance from which today’s best commercial varieties can be improved, so the levels of aflatoxin contamination in the field can ultimately be reduced.

Ancestral genes could hold the key to drought tolerance and disease resistance

In April 2014, the genomes of the groundnut’s two wild ancestral parents were successfully sequenced by the International Peanut Genome Initiative – a multinational group of crop geneticists, who had been working in collaboration for several years.

The sequencing work has given breeders access to 96 percent of all groundnut genes and provided the molecular map needed to breed drought-tolerant and disease-resistant higher-yielding varieties, faster.

“The wild relatives of a number of crops contain genetic stocks that hold the most promise to overcome drought and disease,” says Vincent Vadez, ICRISAT Principal Scientist and groundnut research leader for GCP’s Legumes Research Initiative. And for groundnut, these stocks have already had a major impact in generating the genetic tools that are key to making more rapid and efficient progress in crop breeding.

“Genetically, the groundnut has always been a really tough nut to crack,” says GCP collaborator David Bertioli, from the University of Brasilia in Brazil. “It has a complex genetic structure, narrow genetic diversity and a reputation for being slow and difficult to breed. Until its genome was sequenced, the groundnut was bred relatively blindly compared to other crops, so it has remained among the less studied crops,” he says.

With the successful genome sequencing, however, researchers can now understand groundnut breeding in ways they could only dream of before.

Photo: N Palmer/CIAT

Groundnut cracked.

“Working with a wild species allows you to bring in new versions of genes that are valuable for the crop, like disease resistance, and also other unexpected things, like improved yield under drought,” David says. “Even things like seed size can be altered this way, which you don’t really expect.”

The sequencing of the groundnut genome was funded by The Peanut Foundation, Mars Inc. and three Chinese academies (the Chinese Academy of Agricultural Sciences, the Henan Academy of Agricultural Sciences, and the Shandong Academy of Agricultural Sciences), but David credits GCP work for paving the way. “GCP research built up the populations and genetic maps that laid the groundwork for the material that then went on to be sequenced.”

Chair of GCP’s Consortium Committee, David Hoisington – formerly ICRISAT’s Director of Research and now Senior Research Scientist and Program Director at the University of Georgia – says the sequencing could be a huge step forward for boosting agriculture in developing countries.

“Researchers and plant breeders now have much better tools available to breed more productive and more resilient groundnut varieties, with improved yields and better nutrition,” he says.

These resilient varieties should be available to farmers across Africa within a few years.

Genetics alone will not lift productivity – farmers’ local knowledge is vital

Improvements in the yield, quality and share of the global market of groundnuts produced by developing countries are already being seen as a result of GCP support, says Vincent Vadez. “But for this trend to continue, the crop’s ability to tolerate drought and resist diseases must be improved without increasing the use of costly chemicals that most resource-poor farmers simply cannot afford,” he says.

While genetic improvements are fundamental to developing the disease resistance and drought tolerance so desperately needed by African farmers, there are other important factors that can influence the overall outcome of a breeding programme, he explains. Understanding the plant itself, the soil and the climate of a region are all vital in creating the kinds of varieties farmers need and can grow in their fields.

Photo: Y Wachira/Bioversity International

Kenyan groundnut farmer Patrick Odima with some of his crop.

“I have grown increasingly convinced that overlooking these aspects in our genetic improvements would be to our peril,” Vincent warns. “There are big gains to be made from looking at very simple sorts of agronomic management changes, like sowing density – the number of seeds you plant per square metre. Groundnuts are often cultivated at seeding rates that are unlikely to achieve the best possible yields, especially when they’re grown in infertile soils.”

For Omari Mponda, now Director of Tanzania’s Agricultural Research Institute at Naliendele (ARI–Naliendele), previously Zonal Research Coordinator and plant breeder, and country groundnut research leader for GCP’s Tropical Legumes I project (TLI; see box below), combining good genetics with sound agronomic management is a matter of success or failure for any crop-breeding programme, especially in poverty-stricken countries.

“Molecular markers by themselves will not address the productivity on the ground,” he says, agreeing with Vincent. “A new variety of groundnut may have very good resistance, but its pods may be too hard, making shelling very difficult. This does not help the poor people, because they can’t open the shells with their bare hands.”

And helping the poor of Africa is the real issue, Omari says. “We must remind ourselves of that.”

This means listening to the farmers: “It means finding out what they think and experience, and using that local knowledge. Only then should the genetics come in. We need to focus on the connections between local knowledge and scientific knowledge. This is vital.”

The Tropical Legumes I project (TLI) was initiated by GCP in 2007 and subsequently incorporated into the Programme’s Legumes Research Initiative (RI). The goal of the RI was to improve the productivity of four legumes – beans, chickpeas, cowpeas and groundnuts – that are important in food security and poverty reduction in developing countries, by providing solutions to overcome drought, poor soils, pests and diseases. TLI was led by GCP and focussed on Africa. Work on groundnut within TLI was coordinated by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). The partners in the four target countries were Malawi’s Chitedze Research Station, Senegal’s Institut Sénégalais de Recherches Agricoles (ISRA), and Tanzania’sAgricultural Research Institute (ARI). Other partners were France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), the Brazilian Corporation of Agricultural Research (EMBRAPA) and Universidade de Brasil in Brazil, and University of Georgia in the USA. Tropical Legumes II (TLII) was a sister project to TLI, led by ICRISAT on behalf of the International Institute of Tropical Agriculture (IITA) and International Center for Tropical Agriculture (CIAT). It focussed on large-scale breeding, seed multiplication and distribution primarily in sub-Saharan Africa and South Asia, thus applying the ‘upstream’ research results from TLI and translating them into breeding materials for the ultimate benefit of resource-poor farmers. Many partners in TLI also worked on projects in TLII.

Photo: A Diama/ ICRISAT

Participants at a farmer field day in Mali interact with ICRISAT staff and examine different groundnut varieties and books on aflatoxin control and management options.

Local knowledge and high-end genetics working together in Tanzania

Like Malawi, Tanzania has also experienced the full spectrum of constraints to groundnut production – from drought, aflatoxin contamination, poor soil and limited access to new seed, to a lack of government extension officers visiting farmers to ensure they have the knowledge and skills needed to improve their farming practices and productivity.

Although more than one million hectares of Tanzania is groundnut cropping land, the resources supplied by the government have until now been minimal, says Omari, compared to those received for traditional cash crops such as cashews and coffee.

Photo: C Schubert/CCAFS

A farmer and her children near Dodoma, Tanzania, an area where climate change is causing increasing heat and drought. Groundnut is an important crop for local famers, forming the basis of their livelihood together with maize and livestock.

“But the groundnut is now viewed differently by the government in my country as a result of GCP’s catalytic efforts,” Omari says. “More resources are being put into groundnut research.”

In the realm of infrastructure, for instance, the use of GCP funds to build a new irrigation system at Naliendele has since prompted Tanzania’s government to invest further in irrigation for breeder seed production.

“They saw it was impossible for us to irrigate our crops with only one borehole, for instance, so they injected new funds into our irrigation system. We now have two boreholes and a whole new system, which has helped expand the seed production flow. Without GCP, this probably wouldn’t have happened.”

Irrigation, for Omari, ultimately means being able to get varieties to the farmers much faster: “maybe three times as fast,” he says. “This means we’ll be able to speed up the multiplication of seeds – in the past we were relying on rainfed seed, which took longer to bulk and get to farmers.”

With such practical outcomes from GCP’s research and funding efforts and the new genetic resources becoming available, breeders like Omari see a bright future for groundnut research in Tanzania.

Photo: C Schubert/CCAFS

Groundnut farmer near Dodoma, Tanzania.

The gains being made at Naliendele are not only sustainable, Omari explains, but have given the researchers independence and autonomy. “Before we were only learning – now we have become experts in what we do.”

Prior to GCP, Omari and his colleagues were used to conventional breeding and lacked access to cutting-edge science.

“We used to depend on germplasm supplied to us by ICRISAT, but now we see the value in learning to use molecular markers in groundnut breeding to grow our own crosses, and we are rapidly advancing to a functional breeding programme in Tanzania.”

Omari says he and his team now look forward to the next phase of their research, when they expect to make impact by practically applying their knowledge to groundnut production in Tanzania.

Similar breeding success in Senegal

Photo: C Schubert/CCAFS

Harvesting groundnuts in Senegal.

Issa Faye became involved in GCP in 2008 when the programme partly funded his PhD in fresh seed dormancy in groundnuts. “I was an example of a young scientist who was trained and helped by GCP in groundnut research,” he says.

“I remember when I was just starting my thesis, my supervisor would say, ‘You are very lucky because you will not be limited to using conventional breeding. You are starting at a time when GCP funding is allowing us to use marker-assisted selection [MAS] in our breeding programme’.”

The importance of MAS in groundnut breeding, Issa says, cannot be overstated.

“It is very difficult to distinguish varieties of cultivated groundnut because most of them are morphologically very similar. But if you use molecular markers you can easily distinguish them and know the diversity of the matter you are using, which makes your programme more efficient. It makes it easier to develop varieties, compared to the conventional breeding programme we were using before we started working with GCP.”

By using markers that are known to be linked to useful genes for traits such as drought tolerance, disease resistance, or resistance to aflatoxin-producing fungi, breeders can test plant materials to see whether or not they are present. This helps them to select the best parent plants to use in their crosses, and accurately identify which of the progeny have inherited the gene or genes in question without having to grow them all to maturity, saving time and money.

Photo: S Sridharan/ICRISAT

These women in Salima District, Malawi, boil groundnuts at home and carry their tubs to the Siyasiya roadside market.

Senegal, like other developing countries, does not have enough of its own resources for funding research activities, explains Issa. “We can say we are quite lucky here because we have a well-developed and well-equipped lab, which is a good platform for doing molecular MAS. But we need to keep improving it if we want to be on the top. We need more human resources and more equipment for boosting all the breeding programmes in Senegal and across other regions of West Africa.”

Recently, Issa says, the Senegalese government has demonstrated awareness of the importance of supporting these activities. “We think that we will be receiving more funds from the government because they have seen that it’s a kind of investment. If you want to develop agriculture, you need to support research. Funding from the government will be more important in the coming years,” he says.

“Now that we have resources developed through GCP, we hope that some drought-tolerant varieties will come and will be very useful for farmers in Senegal and even for other countries in West Africa that are facing drought.”

It’s all about poverty

“The achievements of GCP in groundnut research are just the beginning,” says Vincent. The legacy of the new breeding material GCP has provided, he says, is that it is destined to form the basis of new and ongoing research programmes, putting research well ahead of where it would otherwise have been.

“There wasn’t time within the scope of GCP to develop finished varieties because that takes such a long time, but these products will come,” he says.

For Vincent, diverse partnerships facilitated by GCP have been essential for this to happen. “The groundnut work led by ICRISAT and collaborators in the target countries – Malawi, Senegal, and Tanzania – has been continuously moving forward.”

Photo: S Sridharan/ICRISAT

Groundnut harvesting at Chitedze Agriculture Research Station, Malawi.

Issa agrees: “It was fantastic to be involved in this programme. We know each other now and this will ease our collaborations. We hope to keep working with all the community, and that will obviously have a positive impact on our work.”

For Omari, a lack of such community and collaboration can only mean failure when it comes to addressing poverty.

“If we all worked in isolation, a lot of money would be spent developing new varieties but nothing would change on the ground,” he says. “Our work in Tanzania is all about the problem of poverty, and as scientists we want to make sure the new varieties are highly productive for the farmers around our area. This means we need to work closely with members of the agricultural industry, as a team.”

Omari says he and his colleagues see themselves as facilitators between the farmers of Tanzania and the ‘upstream end’ of science represented by ICRISAT and GCP. “We are responsible for bringing these two ends together and making the collaboration work,” he says.

Only from there can we come up with improved technologies that will really succeed at helping to reduce poverty in Africa.”

As climate change threatens to aggravate poverty more and more in the future, the highly nutritious, drought-tolerant groundnut may well be essential to sustain a rapidly expanding global population.

By developing new, robust varieties with improved adaptation to drought, GCP researchers are well on the way to increasing the productivity and profitability of the groundnut in some of the poorest regions of Africa, shifting the identity of the humble nut to potential crop champion for future generations.

More links

Photo: S Sridharan/ICRISAT

Oswin Madzonga, Scientific Officer at ICRISAT-Lilongwe, visits on-farm trials near Chitala Research Station in Salima, Malawi, where promising disesase-resistant varieties are being tested real life conditions.

Jun 162015
 
Ripening barley.

Ripening barley.

Barley is thought to have been one of the first crops ever cultivated by humankind. This is largely because it is a tough plant able to withstand dry and salty conditions. Its fortitude is especially important for the small land-holders living on the fringes of deserts in West Asia and North Africa, where it is “the last crop grown before the desert,” says Dr Michael Baum, who led barley research for the CGIAR Generation Challenge Programme (GCP).

Michael, who is Director of the Biodiversity and Integrated Gene Management Programme at the International Center for Agricultural Research in the Dry Areas (ICARDA), says one of the GCP’s first tasks was to find where the useful genes were in wild barley.

“Looking at wild barley is especially important for low-input agriculture, such as is found in developing countries,” he says. “Wild barley grows in, and is very adapted to, the harsh conditions at the edge of the deserts in the Fertile Crescent of West Asia: Iraq, Syria, Jordan and Turkey.”

In some regions, wild barley produces an even higher yield of grain when there is a drought. And this was the kind of useful trait that GCP researchers were looking for in their work on barley during the first phase of GCP, when the internationally funded Programme set out to enhance genetic stocks and plant-breeding skills that will help developing nations cope with increasingly extreme drought conditions.

Signs of barley being domesticated and grown for human use in the Fertile Crescent date back to more than 8,000 BCE. It was a staple cereal of ancient Egypt, where it was used to make bread and beer.  The Fertile Crescent is a crescent-shaped region containing comparatively moist and fertile land within otherwise arid and semiarid West Asia and the Nile Valley and Nile Delta of Northeast Africa. The modern-day countries with significant territory within the Crescent are Cyprus, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon and Syria; it also includes the southeastern fringe of Turkey and the western fringes of Iran.  Today barley is an important crop for many of these countries, and while production in many other parts of the world is declining it is increasing in this region. Worldwide, barley is grown in more than 100 countries, yielding more than 120 million tonnes a year for food, livestock feed and beer production. This makes it the world’s fourth most important cereal crop, after maize, rice and wheat.

Barley a ‘chosen one’ for research

Photo: Peter Haden/Flickr (Creative Commons)

Preparing barley in Ethiopia.

During its first five years, GCP chose barley as one of its focus crops as advances had already been made in understanding its genetic makeup and in using new molecular plant-breeding technologies to find and incorporate useful genes into barley varieties.

“At the same time, we needed to find the genes or characteristics we did not want in cultivated barley so we could avoid these traits,” says Michael. “This includes the way wild barley disperses its seed when its brittle spikes shatter. Domesticated barley has non-shattering spikes, making it much easier to harvest.”

Resource-poor farmers mostly grow barley in poor environments, where yields of key crops are chronically low, and crop failures are common. Resilient, high-yielding varieties could make a big difference to livelihoods.

Farmers in Central and West Asia and North Africa (CWANA) plant more than five million hectares of barley each year, where it is largely used as feed for the sheep and goats that are the main source of meat, milk and milk products for rural populations. In these environments, barley grain is harvested only two to three times over a five-year period. In years when it is too dry, sheep are sent into the barley field to graze on the straw.

Barley grain is used as animal feed, malt and human food. Barley straw is used as animal feed, for animal bedding and for roofing huts. In many developing countries, livestock graze on the stubble after barley is harvested. Barley is also used for green grazing or is cut before maturity and either directly fed to animals or used for silage. In the highlands of Tibet, Nepal, Ethiopia, Eritrea, in the Andean countries and in North Africa, barley is also an important food source.

Barley-based livestock system on marginal drylands in Morocco.

Barley-based livestock system on marginal drylands in Morocco.

Finding the clues to help breeders select barley’s best DNA

Photo: Dave Shea/Flickr (Creative Commons)

Malted barley.

The quest for better barley varieties – those that yield more, have more protein, can resist pests and diseases and can tolerate drought – means understanding what genes for what characteristics are available to plant breeders.

With 2,692 different barley accessions (or genetically different types of barley) in the ICARDA collection, from 84 different countries, this is no mean feat. GCP-supported researchers selected seed from 1,000 of the most promising accessions and planted single plants, whose seed was then ‘fingerprinted’, or genotyped, according to its DNA composition.

“From this, we selected 300 different barley lines that represented 90 percent of all the different characteristics of barley,” says Michael.

“This [reference set] is really good for someone new to barley. By looking at 300 lines they are seeing the diversity of almost 3,000 lines without any duplication,” he says. “This is much better and quicker for a plant breeder.”

The reference set of 300 barley lines is now available to plant breeders through the ICARDA gene bank.

Morocco researchers use GCP barley reference set to improve food security In Morocco, barley is the second most important cereal after wheat. Farmers produce about 1.3 million tonnes a year from a cultivated area of almost 1.9 million hectares. In this North African country, barley is used as food as well as for animal feed. It plays an important role in food security, as the per capita barley consumption is the highest in the world. However, production is constrained by diseases, pests, and stresses such as drought, and climate change has further aggravated the problem. Morocco imports cereals to meet its domestic demand.  Moroccan varieties of barley have a narrow genetic base, making it difficult to breed better varieties. In this context, the GCP barley reference set was introduced to Morocco from ICARDA and used in the breeding programme. “This has helped my country to develop new varieties,” says Fouad Abbad Andaloussi, Head of the Plant Protection Department at L'Institut National De La Recherche Agronomique (INRA; National Institute for Agricultural Research). “GCP has also greatly enhanced my personal scientific contacts and helped me to explore new developments in plant genetics and biotechnology.”

Photo: ICARDA

Barley growing on experimental fields in Morocco.

Checking out the effects of the environment on gene expression

Photo: World Bank Photo Collection

Harvesting barley in Nepal.

It’s not enough to discover what genes are present in different varieties of barley. It’s also important to understand how these genes express themselves in terms of barley’s yield, quality (especially protein content) and adaptation to stresses such as drought when grown in different environments.

To make this happen, GCP improved collaboration across research centres. This increased the probability of relatively quick advances in identifying new traits and opportunities to improve barley varieties for the poorer farmers of CWANA.

GCP funded a collaborative project between ICARDA and researchers in Australia (the University of Adelaide and the Australian Centre for Plant Functional Genomics), Italy (l’Università degli Studi di Udine) and Syria (Tishreen University) to apply a new method, analysing allele-specific expression (ASE), to understand how genes express themselves in barley, using experimental hybrid plants (cultivated plants crossed with wild barley plants). Over three years, the collaboration tested 30 genes and 10 gene-cross combinations and found that there were changes in genetic expression when plants were grown in drought conditions.

“This is a project we could not have done without the partners in the GCP collaboration,” says Michael. “We gained important insights into how genes are regulated and how gene expression changes under different environmental conditions, such as drought, or during growth stages, such as early plant development or grain filling. We published our results in a high-impact journal [The Plant Journal (2009) 59(1):14–26], which was a great outcome for a project with such a limited timespan.”

This project was designed not so much for the practical plant breeder, but for those using molecular-breeding technologies where it is important to understand that there is a change in the expression of genes over the lifetime of a plant. “This affects the selection of genes for breeding programmes,” says Michael.

Barley: Food of gladiators Barley contains about 75 percent carbohydrate, 9 percent protein and 2 percent fat. Barley grain is rich in zinc (up to 50 ppm), iron (up to 60 ppm) and soluble fibres and has a higher content of Vitamins A and E than other major cereals. Barley has been documented as a high-energy food since the Roman times, when the gladiators were called ‘hordearii’, meaning barley men or barley eaters, because they were fed a barley diet before going to an arena to fight. Some varieties of barley are also remarkably high in protein. For example, some Ethiopian varieties have up to 18 percent protein.

Photo: Peter Haden/Flickr (Creative Commons)

Preparing barley in Ethiopia.

Making the most of wild barley

Photo: Rahel Jaskow/Flickr (Creative Commons)

Wild barley in flower.

Once some of the fundamental research into barley’s building blocks had been done, GCP revisited the potential of wild barley, with the aim to identify specific DNA that increased or decreased drought tolerance.

“Whenever you can’t find the characteristics you are looking for in a cultivated crop, you go back to look again at the wild varieties,” says Michael.

Once again, a collaborative effort – this time between ICARDA, the Scottish Crop Research Institute (since renamed to the James Hutton Institute), the University of California, Riverside, the University of Oregon and Chile’s Instituto de Investigaciones Agropecuarias (INIA; Agricultural Research Institute) – was the key to success.

Joanne Russell from the James Hutton Institute says success came when “we combined the power of genomics with a unique population of 140 barley lines to identify segments of the donor genome that confer drought tolerance”.

The barley lines were composed of an advanced elite genetic background combined with introduced segments of DNA from wild barley that came from the Fertile Crescent.

“We were successful in identifying parts of the DNA from hybrid plants that confer a significant increase in yield under drought,” says Joanne.

Leader of this GCP project from the James Hutton Institute, Professor Robbie Waugh, adds that GCP provided a unique opportunity for their laboratory to interact with international colleagues on a project focussed on improving the plight of some of the world’s poorest subsistence farmers.

“The genetic technologies we had developed prior to the GCP project starting were, at the time, state of the art – even in the more developed world,” says Robbie. “Our ability to then apply these technologies to wild barley genetic material from ICARDA and to varieties derived from wild × cultivated crosses allowed us to learn a lot about patterns of genetic and phenotypic variation in the wider barley gene pool.

“Indeed, we are still working on one of the genetic populations of barley that we studied in the GCP program, now using sophisticated phenotyping tools and approaches to explore how genes in defined segments of the wild barley genome help provide yield stability under drought conditions through architectural variation in the root system.”

Photo: Richard Weil/Flickr (Creative Commons)

Women harvesting barley in India.

GCP builds genetic resources through ongoing collaboration

Photo: Diana Prichard/ONE.org/Flickr (Creative Commons)

Barley in rural Ethiopia.

For Michael, one of the most important outcomes of the GCP work was the ability to meet and work with researchers from other centres across the world.

“Before GCP, I had only visited two other CGIAR centres,” he says. “GCP was the first attempt to develop a programme across the CGIAR centres and to work on a specific topic, which was genetic resources. I would give GCP high marks for stimulating this cross-centre cooperation, particularly through their annual GCP meeting.”

And when the decision came to end barley research after the first phase of GCP, Michael found that he missed the GCP meetings: “I would have found it useful if I could have continued to attend the annual meetings,” he says. “These were much more important to me than getting the project funding out of GCP.”

Despite this and despite dealing with the challenge that some countries, such as China, were unable to provide the barley germplasm (samples of materials) that they initially promised, Michael has continued his relationships with some of the people he first met through GCP. “I’m still collaborating with China through a continuous bilateral effort on barley. Ten years later, the collaborations are still ongoing. Often when a project finishes, the collaboration finishes, but we are still continuing our collaboration on barley.”

Most importantly, Michael believes the GCP-supported and -funded collaborations brought a new approach to providing plant genetic resources to breeders. “The reference sets we assembled for barley and other crops provided a new way to look at large germplasm collections,” he says.

“This was one aim of GCP: about how to have a more rational look at germplasm collections. Now plant breeders don’t have to ask for five to ten thousand accessions of a crop, and then spend several years on evaluation.

“Now they have a higher chance of finding the genetic characteristics they want more quickly from the much smaller reference collection.”

And although the reference-set approach has been further refined since GCP’s first phase of research concluded, Michael believes it builds on what GCP started through its collaborative teams, with barley being just one example.

“GCP helped make it all happen,” he says.

For research and breeding products, see the GCP Product Catalogue and search for barley.

Photo: Oleksii Leonov/Flickr (Creative Commons)

Field of barley.

Jun 052015
 
Photo: Bill & Melinda Gates Foundation

Farmer Maria Mtele holds recently harvested orange-fleshed sweetpotatoes in a field in Mwasonge, Tanzania.

Sweetpotato has a long history as a lifesaver. The Japanese used it when typhoons demolished their rice fields. It kept millions from starvation in famine-plagued China in the early 1960s and came to the rescue in Uganda in the 1990s, when a virus ravaged the cassava crop.

In sub-Saharan Africa, sweetpotato is proving crucial in the fight against blindness, disease and premature death among children under five. And, as agriculture becomes more market-oriented across the continent, sweetpotato has some significant advantages: it requires fewer inputs and less labour than other crops such as maize, tolerates marginal growing areas and can mature within four months.

On these fertile grounds, researchers across the globe are not underestimating the importance of sweetpotato as a staple crop.

“Yields achieved by resource-poor farmers in sub-Saharan Africa are typically low,” says Roland Schafleitner of the International Potato Center (CIP), based in Peru.

“Improved and well-adapted sweetpotato varieties with increased tolerance to drought, pests and diseases will have a positive impact on food and income security in sub-Saharan Africa and can significantly contribute to increasing productivity,” he says.

Roland was Principal Investigator of two research projects funded by the CGIAR Generation Challenge Programme (GCP), which developed genetic and genomic resources for breeding improved sweetpotato.

At the outset of the work, Roland says: “Breeding efforts were limited by the crop’s genetic complexity and the lack of information available about its genetic resources.

“It was clear that if we could develop genetic tools and make concerted efforts towards understanding the gene pool of sweetpotato, the breeding potential of the crop would improve.”

Photo: Bill & Melinda Gates Foundation

Farmer Mwanaidi Rhamdani at work in an orange-fleshed sweetpotato field in Mwasonge, Tanzania.

Sub-Saharan Africans getting their vitamin A from sweetpotato

Photo: CIP

Sweetpotato diversity.

Malnutrition does not always mean a simple lack of calories; research suggests that nutrient shortfalls are an even bigger killer. Vitamin A deficiency is a leading cause of blindness, infectious disease and premature death among children under five and pregnant women in sub-Saharan Africa and Asia.

Sweetpotato comes in a wide range of colours. Varieties with dark orange flesh are naturally very rich in the pigment beta-carotene, which the body converts into vitamin A. However, the sweetpotatoes traditionally grown in Africa are pale-fleshed and low in beta-carotene. African consumers were not used to eating colourful sweetpotato – and these orange-fleshed varieties were in any case not well adapted African growing conditions.

Recent years have therefore seen a collaborative effort by researchers across the world to breed orange-fleshed sweetpotato varieties fortified with high levels of beta-carotene, and even enriched with other nutrients, that have also been crossed with local varieties and so are adapted to local conditions and tastes. A crucial part of these efforts has also been to create public awareness and encourage people to grow, eat and buy these new varieties.

Photo: HarvestPlus

Two cheeky young chappies from Mozambique enjoy the sweet taste of orange-fleshed sweetpotato rich in beta-carotene, or pro-vitamin A.

All of this adds to the growing momentum behind sweetpotato. The growing awareness of sweetpotato’s potential nutritional benefits for the poor and food insecure, as well as its value for subsistence farmers as a reliable crop that withstands drought and requires minimal inputs, mean that it is growing in significance.

Photo: HarvestPlus

Orange-fleshed sweetpotato can be used to make a variety of tasty products from doughnuts to chapati.

More than 95% of the world’s sweetpotato crop is grown in developing countries, where it is the fifth most important staple food crop. It is particularly important in many African countries: Madagascar in Southern Africa; Nigeria in West Africa; and those surrounding the Great Lakes in East and Central Africa – Uganda, Malawi, Angola and Mozambique.

According to 2013 figures from the Food and Agriculture Organization of the United Nations, 3.6 million hectares of sweetpotato were harvested in Africa. While the average global yield of sweetpotato per hectare was 14.8 tonnes, across all East African countries in 2013 it was only half this, at 7.1 tonnes per hectare. In West African nations the average yield was even worse, at 3.7 tonnes per hectare.

Farmers are unable to make the most of their crops because the varieties available to them, including traditional varieties (or landraces) have low resistance to viral diseases and insect pests, and poor tolerance to drought. It is therefore crucial that when developing new varieties breeders are able to efficiently incorporate pest and disease resistance and drought tolerance traits.

Sweetpotato, in spite of its name, is only distantly related to the potato. Unlike the potato – which is a tuber, or thickened stem – the sweetpotato is a root. Sweetpotato is not related to the yam either, despite the physical similarity between the two. Sweetpotato can grow at altitudes ranging from sea level to 2,500 metres. It requires fewer inputs and less labour than other crops such as maize, and, in contrast to the potato, it can tolerate heat.

New DNA markers identified for sweetpotato disease

The sweetpotato virus disease (SPVD) is the most serious disease affecting sweetpotato in sub-Saharan Africa. It often causes serious yield losses of up to 80–90 percent.

The disease is the result of joint infection by two viruses: the sweetpotato feathery mottle virus and the sweetpotato chlorotic stunt virus. Of the two, the stunt virus is the more problematic.

Wolfgang Grüneberg, also from CIP, says that, in the years 2006–2008, 52 new DNA markers were developed as part of GCP-funded research to improve marker-assisted selection for resistance to the disease.

“The results,” says Wolfgang, Principal Investigator for the research, “looked promising for developing a large number of orange-fleshed sweetpotatoes with resistance to SPVD.”

Immediately following the development of the markers, two varieties of sweetpotato were developed using a cloned gene, Resistan, known to confer resistance to the virus. The first variety was used to improve an SPVD test system so that the disease could be diagnosed earlier if a crop was affected. The second variety underwent field tests in regions in Uganda that were highly affected by the disease.

Photo: HarvestPlus

Sweetpotato vines and roots.

Mobilising the genetic diversity of sweetpotato for breeding

The goals of the GCP-supported work were to develop a diverse genetic resource base for sweetpotato and stimulate the use of new tools in ongoing breeding programmes.

To help transfer this work from high-end laboratories to resource-poor research labs in developing countries, GCP promoted collaboration across institutions and borders. Researchers from Brazil, Mozambique, Uganda and Uruguay worked together on sweetpotato genetic research projects.

As Roland explains, the basic first steps needed to begin to ‘mobilise’ the genetic diversity of sweetpotato were developing a reference set of varieties and improving genomics tools to work with polyploid crops, i.e. those possessing multiple sets of chromosomes, such as sweetpotato.

GCP-supported researchers in Peru and sub-Saharan Africa defined a reference set of 472 varieties of sweetpotato, carefully selected and honed to represent both the diversity of the crop and its most important agronomical and nutritional traits.

“Based on a reference set, genetic markers can be developed that are associated with important characteristics of the crop and can help breeders to select favourable genotypes,” says Roland.

The gene sequences developed during the Programme are now available as a Sweetpotato Gene Index.

“Based on these sequences,” says Roland, “molecular markers have been designed that can help breeders and gene-bank curators to assess the genetic diversity of their accessions and to perform genetic mapping studies.

“Today, techniques that yield a much larger number of markers for genetic studies and selection are accessible for sweetpotato,” he says.

Photo: Bill & Melinda Gates Foundation

Mwanaidi Rhamdani (left) works with Maria Mtele in an orange-fleshed sweetpotato field in rural Tanzania.

The genetic lifelines reach Africa

Sweetpotato is one of the most important staple crops in Mozambique, ranking in third position after cassava and maize. The areas harvested in Mozambique in 2013 were 1.7 million hectares of maize, 780,000 hectares of cassava and 120,000 hectares of sweetpotato.

Photo: CIP

A child eats cooked orange-fleshed sweetpotato in Uganda.

GCP funded breeders in Mozambique and Uganda to learn how to identify genetic markers that would prove useful for future sweetpotato breeding.

“Our African partners visited us at CIP and helped us complete the work on identifying markers,” recalls Roland. “This provided the opportunity for direct ‘technology transfer’ to breeders in the target region.”

The collaboration had, for the first time, created a critical amount of genetic and genomics resources for sweetpotato. The resulting Sweetpotato Gene Index and the new markers were published in a peer-reviewed journal, BMC Genomics (2010) 11:604.

The new genetic resources are in use at CIP in Peru and in breeding programmes in Burkina Faso, Mozambique, Uganda, Uruguay and the USA for the assessment of the genetic diversity of germplasm collections.

“The markers have been used for diversity analysis, especially at the CIP gene bank, and also in Africa,” says Roland, who says the markers will help future research.

“Such analysis guides germplasm conservation decisions, and diversity studies are a great tool to develop core collections and composite genotype sets – subsets of the whole collection – which allow for more practical screening for specific traits than large collections.”

More links

Photo: P Casier/CGIAR

Kenyan farmer Emily Marigu with her sweetpotatoes.

Jun 022015
 
Photo: S Edmeades/IFPRI

A farmer transports bananas to market by bicycle in Uganda.

At whatever time of the day or night you are reading this, somewhere in the world there are sure to be farmers trekking many kilometres to take their bananas to local markets. These small-scale farmers produce almost 90 percent of the world’s bananas, and make up a significant portion of the 400 million people around the globe’s tropical girdle – Africa, Asia and Latin America – who rely on bananas for food and a source of income.

Bananas are often called the world’s most popular fruit, and global production in 2012 was almost 140 million tonnes. India is the largest producer, while South and Central American farmers supply the most to international supermarket shelves, exporting 80 percent of their bananas.

The importance of the banana as a food crop in tropical areas cannot be underestimated. More than a simple snack, plantain-type bananas in particular are a key component in savoury dishes. In Central and East African countries – like Cameroon, Gabon, Rwanda and Uganda – one person will eat an average of between 100 kg and 250 kg of banana each year. That equates to somewhere between 800 and 2000 average-sized bananas. In those four countries, bananas account for up to a quarter of people’s daily calorie intake.

Photo:  A Vezina/Bioversity International

A stallholder offers bananas for sale at a fruit market in Nairobi, Kenya.

Banana’s asexuality inhibits its resilience

Photo: G Stansbury/IFPRI

Bananas growing in Rwanda.

Banana propagates though asexual reproduction. This means that all the bananas of each variety are genetically identical, or nearly so, and therefore susceptible to the same diseases. Indeed, the world has already lost almost its entire banana crop once: before the 1950s, the Gros Michel cultivar dominated banana exports, but it was gradually wiped out in most regions by Panama disease, caused by the fungus Fusarium oxysporum. Furthermore, with reproduction being asexual, it is difficult to develop new, resistant varieties through conventional breeding.

At the turn of the twenty-first century, pests and diseases were once again becoming a real threat to global banana production. Little genetic research had been done on the fruit, and only a small portion of its genes had been used in breeding new varieties in its 7,000-year history as a cultivated crop.

“Several research groups had developed genetic markers for bananas [‘flags’ on the genome that can be linked to physical traits], but there was no coordination and only sketchy germplasm studies,” recalls Jean Christophe Glaszmann from CIRAD (Centre de coopération internationale en recherche agronomique pour le développement; Agricultural Research for Development) in France.

Photo: N Palmer/CIAT.

A plantain farmer walks through a plantation in Quindió, Colombia.

“It was not a priority,” says Jean Christophe, who was Subprogramme Leader for Genetic Diversity for the CGIAR Generation Challenge Programme (GCP), an international initiative established in 2004 to encourage the use of genetic diversity and advanced plant science to improve crops.

But between 2004 and 2012, under GCP, a wealth of research work was undertaken that culminated in the complete genetic sequencing of banana. It was a long process, says Jean Christophe, but the GCP-funded work on banana made a significant contribution to important results.

The extensive data on the genetics of banana are now available to scientists worldwide, who can use it to delve deeper into banana’s genes to breed varieties that can sustain the poorer populations in developing countries.

Once finally sequenced, the banana genome was published in one of the most prestigious scientific journals, Nature, in July 2012: “The reference Musa [banana and plantains] genome sequence represents a major advance in the quest to unravel the complex genetics of this vital crop, whose breeding is particularly challenging. Having access to the entire Musa gene repertoire is a key to identifying genes responsible for important agronomic characters, such as fruit quality and pest resistance.”

Filling and full of fuel, and with the major advantage that it fruits year-round, the banana is vital to food security in the tropics. Bananas are potassium-rich and supply people in developing countries with a major source of carbohydrates. They also provide vitamin A, niacin, vitamin B6, thiamine, riboflavin and folic acid.

Passionate people pooled for the work

Photo: UN Women Asia & the Pacific

A banana seller in Hanoi, Vietnam.

Plans to sequence the banana genome started taking shape in 2001 at Bioversity International (a CGIAR centre), where a group of scientists formed the Global Musa Genomics Consortium. At that time, the only plant whose genome had been sequenced was Arabidopsis thaliana (a small flowering plant related to cabbage and mustard, used as a model organism in plant science), with rice close behind.

CGIAR established GCP in 2004 “to tap into the rich genetic diversity of crops via a global network of partnerships and breeding programmes,” according to Hei Leung, who was instrumental to GCP’s foundation and a Subprogramme Leader for Comparative Genomics. (During its first phase GCP was organised by Subprogramme; these were later replaced by Research Themes and Research Initiatives.)

Hei acknowledges that banana was ‘somewhat on the fringe’ of GCP’s main focus on improving drought tolerance in crops. However, he says, it was still relevant for GCP to support the emergence of improved genetics for banana.

The work we did in genetic diversity is about future generations. We wanted a programme that is pro-poor, meaning that the majority of the people in the world are depending on [the crop].

Photo: Adebayo/IITA

A typical banana and plantain market at Ikire in Osun State, Nigeria.

“Drought tolerance is a good candidate because drought affects a lot of poor areas, but you really cannot just take one trait as pro-poor. We had a highly motivated group of researchers willing to devote their efforts to Musa,” says Hei.

“Nicolas Roux at Bioversity International was a passionate advocate for the partnership,” notes Hei. “The GCP community offered a framework for novel interactions among banana-related actors and players working on other crops, such as rice.”

Nicolas concurs on the potential for a little banana research to have great value: “Even though banana is among the most important basic food crops for 400 million people, and 100 million tonnes are grown annually on over 10 million hectares in 120 countries, it’s still under-researched and underfunded.”

The resultant research team was led by Japan’s National Institute of Agrobiological Sciences, which had vast experience in rice genome sequencing.

“So, living up to its name as a Challenge Programme, GCP decided to take the gamble on banana genomics and help it fly,” says Hei.

To advance genetics, you first need the intelligence

Photo: IITA

Banana bunches on an experimental plot at IITA.

Three global research agencies were charged with working together to develop a reference set for banana: Bioversity International, CIRAD, and the International Institute of Tropical Agriculture (IITA).

Creating a reference set – a careful, tactical selection representing the genetic diversity of a crop – is an invaluable first step in enabling scientists to work together to develop more ‘intelligent’ genetic data.

“Initially, we put together a community of institutions that have collections [of banana germplasm],” explains Jean Christophe. “And then we put together these initial materials that we sample in order to develop representative subsamples – this is called a ‘composite’ set because it comes from different institutions.

“Then we genotype this composite collection, and the genotyping allows us to understand how all this [genetic material] is structured. Based on how it is structured, we can re sample a smaller representation – this is what becomes a reference set.”

So, in the case of crops with an extensive genetic resource base, such as rice, there may be more than 100,000 different plant samples, or accessions, that are reduced to a few thousand. For banana, which has a smaller genetic resource base, a few hundred thousand accessions can be reduced to a few dozen.

“A couple of hundred accessions or fewer become manageable for plant breeders or crop specialists. And we want this to serve as a reference, shared among people, so that everybody works on the same reference material,” says Jean Christophe.

“If you work on the same reference material, you can compile information that is more intelligent – you can have the crop specialist who says ‘this is resistant; this is tolerant; this is susceptible’, and you can also have the biochemist, you can have the physiologist; in the end, you can compile the information.”

“We analysed about 500 accessions and narrowed it down to 50,” says Jean Christophe. This reference collection is currently stored at the University of Leuven in Belgium.

The refined data collected on the banana reference set enabled the researchers to unravel the origin and genealogy of the most important dessert banana: the Cavendish, the cultivar subgroup that dominates banana exports worldwide. Thanks to the early GCP work, they were able to show that Cavendish bananas evolved from three markedly different subspecies.

Photo: C Sokunthea/World Bank

65-year-old Cambodian farmer, Khout Sorn, stands in front of his banana trees in Aphiwat Village, Tipo commune, Cambodia.

Malaysian wild subspecies fully sequenced

During these preliminary years of GCP-supported research on banana, the Programme funded several other smaller projects to consolidate genomic resources available for banana. Scientists developed libraries of artificial chromosomes that can be used in sequencing the DNA of banana, as well as genetic maps, which according to Jean Christophe are essential for improving the quality of the sequence.

These projects contributed to the full genome sequencing of a wild banana from Malaysia’s Pahang province in 2008. The ‘Pahang’ subspecies is one of the Cavendish variety’s three ancestors, and has also been shown to have had a role in the origin of many other banana cultivars, including those that are most important for food and economic security.

“GCP did not fund the sequence [of the Pahang banana], but it funded several things that made it possible to undertake full-scale sequencing,” Jean Christophe says. “It supported the development of particular resources and tools, and this made it possible for researchers to start the full-length sequencing.”

Photo: Asian Development Bank

A farmer at work on a banana plantation, Mindanao, the Philippines.

Breeders now need to set to work

The more that is known about the genes responsible for disease resistance and other desirable traits in banana, the more researchers will be able to help farmers in developing countries to improve their yields.

“The road remains long, but now we have a good understanding of genetic diversity,” says Jean Christophe. “We have done a range of studies aimed at unravelling the genes that could control sterility in the species.

“This is undoubtedly an inspiring challenge towards unlocking the genetic diversity in this crop.

“If we have more money in the future, we are going to sequence others of the subspecies so that we can have the full coverage of the current Cavendish genome. But that was a good start,” says Jean Christophe.

“What we have to do now is to create the right populations [of banana] in the field so that we can separate out the characteristics we want to breed for.”

The new intelligence on banana genetics has given breeders the material they need that will ultimately help 400 million people in the tropics sustain food supplies and livelihoods.

More links

Photo: N Palmer/CIAT

Bananas on the way to market in Kenya.

May 292015
 

A little over a decade ago, a PhD student in Brazil was poring over sorghum genes, trying to isolate one that helps plants withstand acidic soils.

Photo: B Nichols/USDA

Sorghum

Scientists at the Brazilian Corporation of Agricultural Research (EMBRAPA) had been researching plants that can grow well in acidic soils since the mid-1970s.

“What we have done within the Generation Challenge Programme,” explains Jurandir Magalhães, now a senior scientist for EMBRAPA, as he reflects back on the past decade, “is speed up maize and sorghum breeding for acidic soil adaptation”.

EMBRAPA partnered with the CGIAR Generation Challenge Programme (GCP) to advance plant genetics so as to breed aluminium-tolerant crops that will improve yields in harsh environments, in turn improving the quality of life for farmers.

Almost 70 percent of Brazil’s arable land is made up of acidic soils. That means the soil has toxic levels of aluminium and low levels of phosphorous – a lethal combination that makes crop production unsustainable. Aluminium toxicity in soil comes close to rivalling drought as a food-security threat in critical tropical food-producing regions. This is because acidic soils reduce root growth and deprive plants of the nutrients and water they need to grow.

Robert Schaffert – EMBRAPA’s longest-serving sorghum breeder – had developed mapping populations for aluminium tolerance in sorghum; these populations were the basis for the work supported by GCP.

During the first four years of the 10-year Programme, Jurandir was able to identify and clone the major aluminium-tolerance gene in sorghum – AltSB – using these mapping populations. The cloned gene has since enabled researchers across Africa and Asia to quickly and efficiently breed improved sorghum and maize plants that can withstand acidic soils.

Jurandir, speaking today about the work to advance sorghum genetic resources, says: “Wherever there are acidic soils with aluminium toxicity and low phosphorous availability, our results should be applicable.”

His story with EMBRAPA is one of many where GCP-supported projects have been instrumental in helping global research centres achieve their goals, which ultimately will help farmers worldwide.

Common objectives

Jurandir is now a research scientist in molecular genetics and genomics at the EMBRAPA Maize & Sorghum research centre. He and colleagues at the centre partnered with scientists in Africa, Asia and the US to identify and clone genes in sorghum, maize and rice that confer resistance or tolerance to stresses such as soil acidity, phosphorus efficiency, drought, pests and diseases.

Photo: R Silva/EMBRAPA

Maize growing in Brazil.

“One important focus of GCP was linking basic research to applied crop breeding,” Jurandir says. “This is also the general orientation of our programme at EMBRAPA. We develop projects and research to produce, adapt and diffuse knowledge and technologies in maize and sorghum production by the efficient and rational use of natural resources.

“GCP provided both financial support and a rich scientific community that were useful to help us attain our common objectives.”

EMBRAPA’s work on cloning the AltSB gene would prove to be one of the first steps in GCP’s foundation sorghum and maize projects, both of which sought to provide farmers in the developing world with crops that will not only survive but thrive in the acidic soils where aluminium toxicity reduces crop production.

Leon Kochian of Cornell University in the US was Jurandir’s supervisor at the time when they applied for GCP funding. Leon was a Principal Investigator for various GCP research projects, researching how to improve grain yields of crops grown in acidic soils.

“The breeders are so important,” says Leon about the importance of supporting institutes such as EMBRAPA to advance plant genetics. “Ultimately, they are the cliché of ‘the rubber hits the road’. They’re the ones who translate what we’re trying to figure out into the actual crop improvements. That’s really what it’s all about.”

“That’s why EMBRAPA is a unique institution. Their mission is to get improved seed out, new germplasm out, for the farmers. They have the researchers in sorghum and maize breeding [Robert Schaffert and Sidney Parentoni] and molecular biology [Jurandir Magalhães and Claudia Guimarães].”

Photo: CIFOR

Maize farmers in Brazil.

Great minds think alike

Jurandir’s EMBRAPA colleague Claudia Guimarães, a plant molecular geneticist focusing on maize, says GCP promoted ‘products’, which also echoed the mission statement of EMBRAPA’s Maize & Sorghum research centre.

The centre’s mission is to: ‘Generate, adapt and transfer knowledge and technology that allows for the efficient production and use of maize, sorghum, and natural resources as well as promotes competitiveness in the agriculture sector, sustainable development, and the well-being of society.’

GCP, says Claudia, “wanted to extract something else from the science – products – the idea of a real, touchable product. You have to have progress: germplasm, lines, markers; they are quite practical things.

“The major goal of GCP is to deliver products that can improve people’s lives worldwide. So it needs to be readily available and useful for other scientists and for the whole community.”

GCP wanted to ensure that research products could and would be adopted, adapted and applied for the ultimate benefit of resource-poor farmers. The Programme therefore set out to catalyse interactions between the various players who are needed to bridge the gap between strategic research in advanced labs and resource-poor farmers.

GCP and EMBRAPA were both working towards tangible applied outcomes, says Claudia: “GCP was not only giving you money, they are really serious about what are you doing: ‘Did you deliver everything you promised?’”

Claudia delivered. She and her team at EMBRAPA were able to find an important aluminium-tolerance gene in maize similar to the sorghum gene. This outcome provided the basic materials for molecular-breeding programmes focusing on improving maize production and stability on acidic soils in Africa and other developing regions.

Photo: L Kochian

Maize trials in the field at EMBRAPA. The maize plants on the left are aluminium-tolerant while those on the right are not.

Multifaceted and tangible results

Through further GCP funding, EMBRAPA researchers Robert Schaffert and Sidney Parentoni were able to work together with two researchers from Kenya, Dickson Ligeyo and Samuel Gudu, to develop a breeding programme to combine the improved Brazilian germplasm with locally adapted Kenyan materials. A new base of improved germplasm was established for Kenyan breeders, which allowed the development of varieties adapted to acidic soils in Kenya.

Sidney, a maize breeder for GCP projects and now the deputy head of research and development for EMBRAPA Maize & Sorghum, says that the benefits of being part of GCP are multifaceted: “It was very important, not only for EMBRAPA as an institute, but also individually for each of the participants that had the opportunity to interact with partners in different parts of the word,” says Sidney.

Photo: Bioversity International

A Kenyan farmer with her sorghum crop.

“Each of them adds a piece to build the results achieved by GCP, which from my perspective promoted a number of advances in the areas of genetics and breeding.

“Technologies such as root image scanning developed at Cornell [University] were transferred to EMBRAPA and allowed us to do large-scale screening in a number of maize and sorghum genotypes with large impacts in phosphorous-efficiency studies.

“Scientists from Africa were trained in breeding and screening techniques at EMBRAPA, and Brazilian scientists had the opportunity to go to Africa and interact with African researchers to jointly develop strategies for breeding maize and sorghum for low-phosphorous and acidic soils.

“These trainings and exchanges of experiences were very important for the people and for the institutions involved,” says Sidney.

Sustainable partnerships to break ground for groundnut

Photo: N Palmer/CIAT

Groundnut

Soraya Leal-Bertioli is a researcher in the EMBRAPA Genetic Resources & Biotechnology centre. She works on groundnut (also known as peanut), and formed part of the GCP team working on groundnut with tolerance to drought and resistance to diseases and fungal contamination. She concurs that GCP united researchers from all over the globe in a common goal.

“GCP not only identified groups, but it went out, searched for people and invited contributions, offered resources to get them together. GCP brought partnerships to a whole new level,” Soraya says.

“Last time I checked there were 200 partners in 50 countries. No one is able to do that. It required a lot of money, a lot of resources, but the way it was dealt with in GCP was: ‘Let’s reach out for the main players, the ones who have the technology, and also the ones who can use the technology’.

“GCP used the resources for the benefit of the community and brought everybody together.”

Soraya says the traditional way of funding research often had ‘no structure’.

“Sometimes a university or funding body receives a large amount of money and decides to build something, a new institute in the middle of the jungle somewhere, but they don’t have anybody to run it; it is not sustainable.

“What GCP did was help to provide the structure and the agents for the whole system. They helped train the people to run the whole system. This is a very sustainable model, which is very likely to give good results in a much shorter time frame than other programmes.”

Watch Soraya – and other members of the team – discuss the complex personality of groundnut and groundnut research in our video series:

Genetic stocks AND people are products

The products and outcomes of the collaboration with GCP have included both the tangible and the not-so-tangible. Sidney says that a large quantity of Brazilian improved maize and sorghum lines tolerant to acidic soils has been developed over the years at EMBRAPA.

“These materials were shared with partners in Africa, and this was a major contribution to Kenyan farmers, as part of this collaborative work done in the scope of GCP.

“To be part of the programme has been very important for EMBRAPA’s research team. It has given us the opportunity to interact with a diversity of institutes.”

Sidney mentions institutes they gave worked with through GCP, including Cornell University and Texas A&M University in the US, the Japan International Research Center for Agricultural Sciences (JIRCAS), the International Rice Research Institute (IRRI), the International Maize and Wheat Improvement Center (CIMMYT), and various institutes in Africa, such as Moi University, Kenya, and the Kenya Agricultural and Livestock Research Organisation (KALRO).

Sidney concludes: “In this large network of partnerships, EMBRAPA was able to learn and to share information in a highly productive way.

“From my perspective, the involvement with GCP projects allowed me to grow as a researcher and as a person, and also at the same time to share and to acquire new knowledge in a number of areas. I think it was a ‘win-win’ interaction for all the participants.”

Many of the products generated within the scope of GCP, such as markers and germplasm, are already available within EMBRAPA’s breeding programmes. Avenues for further research have been paved based on the GCP achievements, and these new research lines will be continued within new projects.

As Claudia says: “The strong partnerships built along the way with GCP will be maintained by us joining with new research teams from other institutes and countries to work on new projects.”

More links