Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Oct 192015
 

IBP-logoBy 2050, the global demand for food will nearly double, numbers of farmers are predicted to decrease and the amount of suitable farmland is not expected to expand. To meet these challenges, farmers will rely on plant breeders becoming more efficient at producing crop varieties that are higher yielding and more resilient.

The Integrated Breeding Platform (IBP), established by the CGIAR Generation Challenge Programme (GCP), provides plant breeders with state-of-the-art, modern breeding tools and management techniques to increase agricultural productivity and breeding efficiency. Its work democratises and facilitates the adoption of these tools and techniques across world regions and economies, from emerging national programmes to well-established companies. In particular, it is helping to bridge the technological and scientific gap prevailing in developing countries by providing purpose-built informatics, capacity-building opportunities and crop-specific expertise to support the adoption of best practice by breeders, including the use of molecular technologies. This will help reduce the time and resources required to develop improved varieties for farmers.

IBP is certainly a winner for maize breeder Thanda Dhliwayo of the International Maize and Wheat Improvement Center (CIMMYT): “IBP is the only publicly available integrated breeding data-management system. I see a lot of potential in increasing efficiency and genetic gain of public breeding programmes,” he says.

For Graham McLaren, who was GCP’s Bioinformatics and Crop Information Sub-Programme Leader, an informatics system is vital for advancing the adoption of modern breeding strategies and the use of molecular technologies.

“One of the biggest constraints to the successful deployment of molecular technologies in public plant breeding, especially in the developing world, is a lack of access to informatics tools to track samples, manage breeding logistics and data, and analyse and support breeding decisions,” says Graham, who is now IBP Deployment Manager for Eastern and Southern Africa.

This is why IBP was set up, explains Graham: “We want to put informatics tools in the hands of breeders – be they in the public or private sector, including small- and medium-scale enterprises – because we know they can make a huge difference.”

Breeders access IBP's services through its Web Portal.

Breeders access IBP’s services through its Web Portal.

Handling big data

Knowledge is power, making data are almost a crucial a raw material for plant breeding as seeds. To make good choices about which plants to use, breeders need information from thousands of plant lines about a wide range plant of characteristics, usually collected during field trials or greenhouse experiments, in a process known as phenotyping. Effective information management is therefore critical in the success of a breeding programme. IBP tackles these crucial information management issues, and many of its current users are finding it invaluable for handling their phenotypic data. IBP also aims to facilitate the use of molecular-breeding techniques, which require genetic as well as phenotypic information (see box), and support users in integrating these into their breeding process.

Marker-assisted selection – highlighting genes that control desired traits This technique involves using molecular markers (also known as DNA markers) to flag the presence of specific genes associated with desired traits and trace their descent from one generation to the next. These markers are themselves fragments of DNA that highlight particular genes or genetic regions by binding near them. To use an analogy, think of a story as the plant’s genome: its words are its genes, and a molecular marker works as a text highlighter. Molecular markers are not precise enough to highlight specific words (genes), but they can highlight sentences (genomic regions) that contain them. Plant breeders can generally use molecular markers early in the breeding process to determine whether plants they are developing will have the desired trait.

The advent and implementation of molecular breeding has increased breeders’ efficiency and capacity to generate new varieties – although the inclusion of genetic data has also added to the amount of information that breeders need to handle.

Photo: HarvestPlus

An abundant harvest of nutrient-enriched cassava in Nigeria.

“Prior to molecular breeding, we would record our observations of how plants performed in the field [phenotypic data] in a paper field book; we would either file the book away or re-enter the data into an Excel spreadsheet,” says Adeyemi (Yemi) Olojede, Assistant Director and Coordinator in charge of the Cassava Research Programme at the National Root Crops Research Institute (NRCRI) in Nigeria and Crop Database Manager for NRCRI’s GCP-funded projects.

“We still need to phenotype, but molecular-breeding techniques allow us to select for plant characteristics early in the breeding process by analysing the plant’s genotype to see if it has genes associated with desirable traits,” says Yemi. Groundwork is needed in order to make this possible: “This means we need to analyse the data of each plant’s genetic make-up as well as the phenotypic data so we can verify whether certain genes are responsible for the traits we observe.”

By using molecular markers to make certain which plants have useful genes right from the start  – simply by testing a tiny bit of seed or seedling tissue – breeders and agronomists like Yemi can carefully select which ‘parent’ plants to use. These are then crossed in just the same way as in conventional breeding, but using only the most promising parents makes each generation is a much bigger step forward. Another advantage for breeders is that they do not necessarily have to grow all of the progeny from each set of crosses – usually thousands – all the way to maturity to see which plants have inherited the traits they are interested in.

The IBP Breeding Management System makes it much easier for breeders to manage their data and make good use of both phenotypic and genotypic information. The Crossing Manager function facilitates the planning and tracking of crosses.

The IBP Breeding Management System makes it much easier for breeders to manage their data and make good use of both phenotypic and genotypic information. The Crossing Manager function facilitates the planning and tracking of crosses.

All of this makes breeding more efficient, reducing the time and cost associated with field trials and cutting the cumulative time it takes to breed new varieties by half or more. The end result is that farmers get the new crop varieties they need more quickly.

Keeping track of masses of information has always been a headache for breeders. However, the increased burden of data management that molecular breeding brings – together with the need to be able to carry out specialised genotypic analysis (study of the genetic make-up of an organism) – has proved to be a limitation for many public national breeding programmes such as NRCRI. These have consequently struggled to adopt molecular-breeding techniques as readily as the private sector.

Wanting to overcome this limitation as part of its mission to advance plant science and improve crops for greater food security in the developing world, in 2009 GCP gave Graham McLaren the momentous task of overseeing the development of the Integrated Breeding Platform.

Clearing the bottleneck

The IBP Web Portal provides information and access to services and crop-specific community spaces. These help breeders design and carry out integrated breeding projects, using conventional breeding methods combined with and enhanced by marker-assisted selection methods. The Portal also provides access to downloadable informatics tools, particularly the Breeding Management System (BMS).

While there are multiple analytical and data-management systems on the market for plant breeders, what sets the BMS apart is its availability to breeders in developing countries and its integrated approach. Within a single software suite, breeders are able to manage all their activities, from choosing which plants to cross to setting up field trials.

Graham explains that IBP has brought together all the basic tools that a breeder needs to carry out day-to-day logistics, data management and analysis, and decision support. “We’ve worked with different breeders to develop a whole suite of tools – the BMS – that can be configured to support their various needs,” explains Graham. “Having all the tools in one place allows breeders to move from one tool to the next during their breeding activities, without complex data manipulation. We’ve also set up the system for others to develop and share their tools, so that it can continue to grow with new innovative ideas.”

The IBP Breeding Management System has a complete range of interconnected tools. The Germplasm Lists Manager supports breeders in managing their sets of breeding materials.

The IBP Breeding Management System has a complete range of interconnected tools. The Germplasm Lists Manager supports breeders in managing their sets of breeding materials.

Another feature of the Platform is that it provides breeders with access to genotyping services to allow them to do marker-assisted breeding. This is particularly useful for breeders in developing countries, who often don’t have the capacity to do this work. “It’s about giving all breeders the opportunity to enhance the way they do their job, without breaking the budget,” says Graham.

A unique and holistic component of IBP is the Platform’s community-focused tools. “IBP is as much about sharing knowledge as it is about managing data,” says Graham. “We’ve integrated social media to allow anybody with an interest in breeding, say, cowpeas, to join the cowpea community. They needn’t necessarily be a collaborator; they just have to have an interest in breeding cowpeas. They could read about what’s going on, contact people in the community and say ‘I’ve seen results for your trial. Could you send me some seed because I think it will do well in my region?’ or ‘Could you please further explain the breeding method you used?’ That’s what we hope to inspire with those communities.”

Graham concedes that this aspiration for the Platform has not yet been fully realised. However, he is hopeful that by providing training, coupled with the support from several key institutes and breeders, these communities will help to increase adoption of IBP and its tools.

“We are well aware that this Platform will be a big step for a lot of breeders out there, and they will need to invest time and patience into learning how to adapt it to their circumstances,” says Graham. “However, this short-term investment will save them time and money in the long term by making their process a lot more efficient.”

For Guoyou Ye, a senior scientist with the International Rice Research Institute (IRRI), participating in IBP meant that he has gained a lot more understanding about the needs of breeders in developing countries for user-friendly tools.

“I started to spend time doing something for the resource-poor breeders. This has resulted in many invitations by breeding programmes in different countries to conduct training, and has given me a chance to establish a network for future work. I also had the chance to work with internationally well-known scientists and informatics specialists,” he says.

Photo: N Palmer/CIAT

Freshly threshed rice in India.

Providing help where it is needed

Yemi Olojede is another person who has been championing IBP, and his focus has been in Nigeria and other African countries. He spent time at GCP’s headquarters in Mexico in 2012 to sharpen his data-management skills and provide user insights on the cassava database. “I enjoy working with the IBP team,” says Yemi. “They pay attention to what we [agronomists and breeders] want and are determined to resolve the issues we raise.”

Yemi has also helped the IBP team run workshops for plant breeders throughout Africa.

He recounts that attendees were always fascinated by IBP and the BMS, but cautious about the effort required to learn how to use it. They were pleased, though, when they received step-by-step ‘how to’ manuals to help them train other breeders in their institutes, with additional support to be provided by IBP or Yemi’s team in Nigeria.

“We told them if they had any challenges, they could call us and we would help them,” says Yemi. “I feel this extra support is a good thing for the future of this project, as it will build confidence in the people we teach. They can then go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

IBP is continuing to run these training courses, through newly established regional hubs in Africa and Asia.

Breeders and researchers rate the Integrated Breeding Platform (IBP) “IBP is an important tool in current and future enhancement of national breeding programmes.” –– Hesham Agrama, Soybean Breeder, International Institute of Tropical Agriculture, Zambia “The tools being developed with IBP will form the basis of crop information management at the Semiarid Prairie Agricultural Research Centre [SPARC] and other Agriculture and Agri-Food Canada research centres.” –– Shawn Yates, Quantitative Genetics Technician, SPARC, Canada  “We have successfully integrated IBP with our lentil programme and also included IBP in the training that we conduct regularly for the benefit of our partners in national agricultural research systems.” –– Shiv Agrawal, lentil breeder, International Center for Agricultural Research in the Dry Areas, Syria “Our institute has embraced use of the Breeding Management System and IBP, and we are already seeing results in improved data management within the Seed Co group research function.” –– Lennin Musundire, senior maize breeder, Seed Co Ltd, Zimbabwe

Mark Sawkins, IBP Deployment Manager for West and Central Africa, is helping to coordinate the formation and integration of the regional hubs within key agricultural institutes, including the Africa Rice Center in Benin, Biosciences Eastern and Central Africa (BecA) in Kenya, Centre d’étude régional pour l’amélioration de l’adaptation à la sécheresse (CERAAS) in Senegal, the Chinese Academy of Agricultural Sciences (CAAS) in China, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in India, the International Institute of Tropical Agriculture (IITA) in Nigeria, and the National Center for Genetic Engineering and Biotechnology (BIOTEC) in Thailand. Several further hubs are planned in additional countries, including in Latin America.

He says the hubs provide localised support in the use of IBP tools: “Their role is to champion IBP in their region,” says Mark. “They can take advantage of their established relationships and skills to help new users adopt the Platform. This includes providing education and training, technical support for IBP tools, and encouraging users to build their networks through the crop communities.”

IBP Regional Hubs worldwide.

IBP Regional Hubs worldwide.

Breeding rice and maize more efficiently using IBP

For Mounirou El-Hassimi Sow, a rice breeder from the Africa Rice Center, IBP is more than just a tool that helps him manage his data: “I’m seeing the whole world of rice breeders as a small village where I can talk to everyone,” he says.

“Through IBP, I have access to this great network of people, who I would never have met, who I can refer to when I have some challenges.”

Social networking tools are a novel feature incorporated into IBP to further develop the capacity of breeders like Mounirou. IBP hosts a number of crop-based and technical Communities of Practice that were established by GCP. These have nurtured relationships between breeders across different countries and organisations, encouraging knowledge sharing and support for young scientists.

Another way GCP has promoted and developed capacity to use IBP and molecular-breeding techniques is through training. Starting in April 2012, the Integrated Breeding Multiyear Course (IB–MYC) trained 150 plant breeders and technicians from Africa and Asia. The participants attended three two-week intensive face-to-face training workshops spread over three years, with assignments and ongoing support between sessions.

Photo: V Boire/IBP

Roland Bocco (Africa Rice center, Benin), Dinesh K. Agarwal (ICAR, India) and Susheel K. Sarkar (ICAR, India) work together on a statistics assignment during their final workshop of the Integrated Breeding Multiyear Course (IB–MYC).

Mounirou participated in the course and says it provided him with the opportunity to learn more about molecular breeding and practice using the associated management and data analysis tools. “I had learnt about the tools in university and seen them on the Internet, but I did not know how to use them,” says Mounirou. “During the first year, we learnt about the theory and how the tools work. During the second and third years, we were comfortable enough with the tools to use our own data and troubleshoot this with the tutors. This was great and provided me with confirmation that these tools were applicable and useful for my work.”

Mounirou says he is now sharing what he learnt during the course with his co-workers and other plant breeders in Africa. “Since the Africa Rice Center became a regional hub for IBP, I’ve volunteered to help train rice breeders. It’s great to be able to share what I learnt and help them realise how this tool will help make their work so much easier.”

Photo: CIMMYT

A maize farmer and community-based seed producer in Kenya.

Another IB–MYC trainee, Murenga Geoffrey Mwimali, a maize breeder from the Kenya Agriculture and Livestock Research Organisation (KALRO), is also helping his networks to benefit from IBP. “When I returned from the training, I took the initiative to demonstrate the Platform to the management of my organisation, to show them that it is what we need to implement at the institute level. They were overwhelmingly positive, and we are working on running a training course for other researchers in the organisation to learn how to use the Platform.”

Jean-Marcel Ribaut, GCP and IBP Director, says these championing efforts are exactly what GCP and IBP were hoping IB–MYC would initiate. “By providing this initial intensive training to these selected participants, we felt this groundswell of capacity would slowly grow once they built their confidence,” says Jean-Marcel. “That young researchers like these feel they are competent and obligated to share what they learnt is a true credit to the product and the participants.”

From the GCP nest to world-scale deployment

IBP has been the single largest GCP investment. From 2009 to 2014, GCP allocated USD 22 million to the initiative, with financial support from the Bill & Melinda Gates Foundation, the European Commission, the UK Department for International Development, CGIAR and the Swiss Agency for Development and Cooperation. This represented 15 percent of GCP’s entire budget.

Following GCP’s close in December 2014, IBP will continue to develop and improve over the next five years, with funding primarily originating from the Bill & Melinda Gates Foundation. While the priority has been on informatics and service development in Phase I, the main focus of Phase II will be to concentrate on deployment and adoption. In the long term, the Platform is seeking further ongoing funding, and also looking into implementing some form of user-contribution for specialised or consulting services.

“We wanted to develop a tool to provide developing countries with access to modern breeding technologies, breeding materials and related information in a centralised and practical manner, which would help them adopt molecular-breeding approaches and improve their plant-breeding efficiency,” says Jean-Marcel. “I believe we have achieved this and at the same time built a tool that will prove very useful for commercial companies too. If we want the tool to continue to be affordable and sustainable for developing countries, then we have to look at ways of finding new sources of funding and of making revenue to offset the costs.”

Stewart Andrews, IBP Business Manager, is helping to make this happen.

“What we are looking at is a tiered membership system in the private sector, where enterprises would pay more the larger they are,” explains Stewart. “This would also be dependent on where in the world they are, with enterprises in Europe and North America contributing proportionately more financially than those in developing countries. This will help us to continue investing in our solutions while keeping them accessible to national programmes and universities in developing countries at little to no fee.”

For Jean-Marcel, creating a commercial stream for IBP services is a win for all parties. “If we are able to generate revenue we can not only provide sustainable support and offset the cost for poorer institutes, we can also continue to develop and improve the BMS software suite so that it becomes the tool of choice all over the world. In terms of social responsibility, the corporate world can play an essential role in this not only as donors but even more effectively as clients and users – adopting the BMS makes good business sense.”

Stewart says a sustainable income is vital for providing training and assistance. “We currently have about 7,000 researchers in the developing world who get this software for free, and each week we get 20–25 requests for help, assistance and training. This support costs money but is indispensable, particularly for those in the developing world who are trying to implement molecular breeding for the first time. You have to remember that this software is all part of a revolution in terms of plant breeding, so we need to provide as much assistance as we can if these breeders are going to buy into molecular breeding and all of its benefits.”

The IBP team is convinced that rolling out IBP will have a significant impact on plant breeding in developing countries.

Indeed, so far there have been more than 1,300 unique downloads of the BMS, with at least 250 early adopters worldwide using the software suite across their day-to-day breeding activities. The Platform’s strategy now builds on three regional teams (West and Central Africa, Eastern and Southern Africa, and South and South East Asia), each including experienced breeders and data managers. With the help of local representatives at seven well-established Regional Hubs to date (with more Hubs in development), this strategy has thus far yielded commitments from six African countries at the national level; from 24 Institutes spanning 58 breeding programmes at different stages of the adoption process; from 14 Universities where faculty members are using and/or teaching the BMS, partially or entirely; and from 134 “champions” engaged in the deployment plans and in supporting their peers.

“Because IBP has a very wide application, it will speed up crop improvement in many parts of the world and in many different environments. What this means is that new crop varieties will be developed in a more rapid and therefore more efficient manner,” concludes Graham.

More links

Oct 182015
 

C-Egesi_w“You can use any technology in the world, you can develop any product, but you need the products that farmers are willing to grow in their field.”

So says Chiedozie Egesi, a plant breeder and geneticist who has been one of the inspirational leaders and Principal Investigators for the CGIAR Generation Challenge Programme’s (GCP) Cassava Research Initiative in Africa.

It was his commitment to helping farmers that led Chiedozie to forsake his dream of becoming a surgeon, and instead to train as a plant breeder and help smallholder farmers in Nigeria. Having grown up in a small town in south-eastern Nigeria where poverty was a daily reality, he was particularly concerned about food security and nutrition for the people. He dreamt of developing cassava varieties that could beat the pests and diseases that often devastate such crops.

Photo: IITA

Peeling cassava roots.

“The food people grow should be nutritious, resistant and high-yielding enough to allow them to sell some of it and make money for other things in life, such as building a house, getting a motorbike or sending their kids to school,” Chiedozie says.

Nigeria is the most populous African country, with a population of more than 174 million. The main staple food is cassava, making Nigeria the world’s largest producer and consumer of the crop. But cassava is also important in other African countries. It is grown by nearly every farming family in sub-Saharan Africa. Africa produced nearly 140 million metric tonnes of cassava in 2012 – but most of the production is low-yielding subsistence farming for food by small-scale farmers for food for their own households alone.

After almost eight years working on GCP-supported cassava projects, Chiedozie is proud of what they have managed to accomplish: “That we’ve been able to give African farmers the varieties that they will love to grow is my biggest achievement”.

Meet Chiedozie and hear all about his research and the importance of cassava in the video series below (or watch on YouTube):

Transformation for Chiedozie – and for cassava

Chiedozie’s journey with GCP began after he had gained his PhD in yam breeding from the University of Ibadan, Nigeria. He undertook further studies and training at Cornell University and the University of Washington, both in the USA. He then returned home to Nigeria to lead the cassava breeding team at the National Root Crops Research Institute (NRCRI) and, following a promotion in 2010, was made Assistant Director of NRCRI’s Biotechnology Department. In 2004, a chance find on the Internet of a molecular breeding training programme in South Africa first led to Chiedozie’s involvement in GCP.

In 2010, work by Chiedozie and the NRCRI team, in collaboration with a transnational network of partners, resulted in the official release to Nigerian farmers of Africa’s first cassava variety developed using molecular-breeding techniques. Known as UMUCASS33 (or CR 41-10), it was resistant to cassava mosaic disease (CMD) – a devastating plant disease that can wipe out entire cassava crops – and also highly nutritious. In addition to a stream of further disease-resistant varieties, in 2012 they followed this accomplishment with the release of a high-starch variety bred using molecular techniques.

Photo: IITA

Nigerian women at work processing cassava.

In 2011, the cassava team together with the International Institute of Tropical Agriculture (IITA) and HarvestPlus (another CGIAR Challenge Programme focussed on the nutritional enrichment of crops), released three cassava varieties rich in pro-vitamin A, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A requirement – a figure Chiedozie and his team are now ambitiously striving to increase to 50 percent. In 2014, they released three more pro-vitamin A varieties with higher concentrations of beta-carotene.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold for the people of Africa.

Research that delivers benefits to poor farmers is what drives Chiedozie. In addition to the direct rewards of new varieties there are other highlights from his involvement with GCP, indicating a long term change in breeding science: “People are now using improved or modern techniques in breeding; people think about database management in cassava breeding across Africa; and African breeders are getting PhDs in molecular breeding.”

Photo: N Palmer/CIAT

Cassava leaves.

Building African capacity

Chiedozie believes a crucial element of GCP’s success in breeding better cassava varieties for smallholder African farmers lies in the capacity building and infrastructure support provided by GCP.

After his initial GCP training at the University of Pretoria, South Africa, Chiedozie engaged in other capacity-building opportunities, including a one-year visiting scientist fellowship at the International Center for Tropical Agriculture (CIAT) in Colombia. The significance of these early GCP opportunities was, Chiedozie says, momentous: “Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then.”

Chiedozie quoteChiedozie emphasises that such training opportunities are vital for the future food security of Africa. “We raised up a new crop of cassava breeders in Africa – people who were bold enough to take up a molecular breeding project and pursue it with support from the international centres. And today we are seeing the results of that. Cassava breeding programmes are standing today because of our quality of seeds sown in the past.”

The networking opportunities offered by the Cassava Community of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – have meant that Chiedozie and his colleagues could expand their collaboration at the local, national and regional levels: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons and also made our work more visible,” he says, citing effective links formed with Côte d’Ivoire, Ethiopia, Ghana, Liberia, Malawi, Mozambique, Sierra Leone and South Sudan.

Photo: M Mitchell/IFPRI


Selling fufu, a staple food made with cassava flour, at a market in Nigeria.

A paradigm shift

These opportunities have led to what Chiedozie calls a ‘paradigm shift’ in how national research agencies are viewed by donors and research investors: “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.

“Our work with GCP helped us to gain that capacity that we needed to be able to negotiate or even make a request for funding. And people are able to trust that you can deliver if you have delivered in the past for an organisation like GCP. So it gave us credibility; it gives us a platform to be able to speak to donors directly, and donors can now approach us, which never used to happen in pre GCP days.”

This newly found confidence and profile sees the NRCRI cassava team currently engaging with the Bill & Melinda Gates Foundation and the CGIAR Research Program on Roots, Tubers and Bananas (RTB) on research that will expand on and follow through on what GCP started.

Hear from Chiedozie on the beneficial outcomes of GCP – in terms not only of variety releases but also of attracting further projects, prestige, and enthusiastic young breeders – in the video below (or on YouTube):

For Chiedozie, his dream of helping his country’s struggling farmers and people is coming true. He has no regrets about dropping his dream of becoming a surgeon for one of helping his country as a plant breeder: “Coming from Umuahia, a small town in the southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school.

“Despite the social injustice around me, I always thought there was opportunity to improve people’s lives. This is what the GCP-supported research has helped me to do, even faster than I would have believed possible.”

More links

Oct 132015
 

 

Photo: N Palmer/CIAT

The vibrant colours of a cassava leaf.

Little did some of Ghana’s crop researchers know back in 2007 that they would be cultivating not just their plants but also themselves over the following seven years.

“When you see one person being trained and then another person being trained, it doesn’t mean much. But when you put all the numbers together and they see themselves as a force, as a team, I think that’s where new strength lies for our African researchers,” reflects Elizabeth Parkes on the impacts of the CGIAR Generation Challenge Programme (GCP).

Elizabeth is a cassava breeder in Ghana. She works for the Crops Research Institute (CRI) of Ghana’s Council for Scientific and Industrial Research (CSIR) and is currently on a leave of absence working at the International Institute of Tropical Agriculture (IITA).

“Wherever I go, whatever opportunity I have, I refer back to GCP and its capacity-building work. You see, it’s good to release new plant varieties, but it’s also good to release people,” she says.

The internationally funded GCP set out to enhance the local plant-breeding capabilities of people like Elizabeth, and so help developing nations meet ever-growing demands for food in the face of climate change and worsening drought conditions, the threat of crop disease, and other pressures.

Photo: N Palmer/CIAT

Scientists at the Crops Research Institute (CRI) work to improve crop production in Ghana and so ensure national food security and decent livelihoods for people like this Ghanaian cassava farmer.

This has meant empowering scientists with cutting-edge tools and knowledge, as well as overcoming some surprisingly down-to-earth obstacles.

“One thing that really energises me,” enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work and being given the chance to do the how.”

Hannibal, under his GCP remit, was asked to visit the research sites of GCP-funded projects at research centres and stations across Africa, to identify those where effective research might be hindered by significant gaps in three fundamental areas: infrastructure, equipment and support services. He selected 19 target research sites, in Burkina Faso, Ethiopia, Ghana, Kenya, Mali, Niger, Nigeria and Tanzania. Two of these were in Ghana, namely the CRI research sites at Kumasi and Tamale.

The mission of CRI is to ensure high and sustainable crop productivity and food security in Ghana through the development and dissemination of environmentally sound technologies. Its research areas are broad and include maize, rice, cowpeas, soybeans, groundnuts, cassava, yams, cocoyams, sweetpotatoes, plantains and bananas.

In developing countries like Ghana that the obstacles to achieving research objectives are often quite mundane in nature: a faulty weather station, a lack of irrigation systems, or fields ravaged by weeds or drainage problems and in dire need of rehabilitation. Yet such factors compromise brilliant research.

Even a simple lack of fencing commonly results not only in equipment being stolen, but also in precious experimental crops being stomped on by roaming cattle and wild animals such as boars, monkeys, hippopotamuses and hyenas; this also poses a serious threat to the safety of field staff.

“The real challenge lies not in the science, but rather in the real nuts and bolts of getting the work done in local field conditions,” Hannibal explains.

He says: “If GCP had not invested in research support infrastructure and services, then their investment in research would have been in vain. Tools and services must be in place as and when needed, and in good working order. Tractors must be able to plough when they should plough.”

Photo: N Palmer/CIAT

Cassava chips on sale in a Ghanaian market.

Ghana gains a new centre of excellence

CRI Ghana quote 1Elizabeth is one of more than 10 researchers from Ghana who gained their PhDs via GCP-funded research projects. They were given the opportunity to travel to international research laboratories to learn the latest research methods, train in genotyping and establish contacts with leading scientific minds.

“They [GCP] have made us attractive for others to collaborate with,” says Elizabeth.

“GCP gave you the keys to solving your own problems; it put structures in place so that knowledge learnt abroad could be transferred and applied at home.

“Before GCP we really struggled, but now everybody wants to have training in Ghana. Everybody wants to have something to do with us, and I will always say thank you to GCP for that, for making us attractive as researchers,” Elizabeth says.

At the outset of the Programme, Elizabeth was learning how to breed new cassava varieties suitable for African soils. She worked with scientists from IITA in Nigeria to use genetic resources (germplasm) from South America, where cassava originates, to integrate the CMD2 gene into local germplasm using molecular breeding. CMD2 gives cassava resistance to the devastating cassava mosaic disease, which slowly shrivels and yellows leaves and roots, destroying crop yields.

Photo: IITA

Elizabeth Parkes poses with a sturdy and nutritious harvest of cassava roots.

Cassava is a lifeline for African people, and is a particularly important staple food for poorer farmers. More cassava is produced in Africa than any other crop, according to 2012 figures from the Food and Agriculture Organization of the United Nations. It is grown by nearly every farming family in sub-Saharan Africa, supplying about a third of people’s daily energy intake in the region. This makes cassava mosaic disease a potential disaster, and makes effectively breeding improved varieties an activity with real impact.

“We started out doing low-cost marker-assisted selection, for which we had some grants. Someway, somehow, the government got interested and brought in more resources. So together we started a small biotech lab. Now this lab has become the Centre of Excellence for West African productivity,” says Elizabeth.

“I have attended three GCP Annual Research Meetings, and I have won awards for my posters. This greatly boosted my confidence,” says Elizabeth. She also continues to be an active member of the Cassava Community of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – which facilitates and supports the integration of marker-assisted selection into cassava breeding. All this has accelerated Elizabeth’s quest to produce and disseminate farmer-preferred cassava varieties that are resistant to pests and diseases.

“We are all forever grateful to GCP and its funders. GCP has had a huge impact on research in Ghana, especially for cassava, rice, maize and yam. All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

Capacity building à la carte a real ‘life changer’

For Allen Oppong, a maize pathologist at CRI, GCP was a life changer too: “Indeed, I am very grateful to GCP for making me what I am today.”

CRI Ghana quote 2Allen’s first experience of GCP was in 2007, when he won a Capacity building à la carte grant for research into characterising locally adapted maize varieties. During the project he travelled to international research meetings and received training in marker-assisted selection in advanced laboratories.

Infrastructure improvements funded by GCP also came at a critical time for Allen. There was a drought, which, without the irrigation systems provided through the Programme, would have meant a much longer research process.

Even without drought, these kinds of improvements can dramatically speed up breeding, as Hannibal explains: “By providing glasshouses or the capacity to irrigate in the dry season, we are enabling breeders to accelerate their breeding cycles, so that they can work all year round rather than having to wait until the rain comes.”

“Through the support of GCP,” Allen recalls, “I was able to characterise maize varieties found in Ghana using the bulk fingerprinting technique. This work has been published and I think it’s useful information for maize breeding in Ghana – and possibly other parts of the world.”

One of the biggest challenges that Allen experienced during his GCP work was getting farmers to try the new varieties that are being developed.

“Most people don’t like change. The new varieties are higher yielding, disease resistant, nutritious – all good qualities. But the challenge is demonstrating to farmers that these materials are better than what they have.

Photo: N Palmer/CIAT

A Ghanaian farmer holds a just-harvested maize ear.

“You can have very good material that has all these attributes, but if the farmer doesn’t have access to it, then how can he know the attributes that you are talking about? How can he see it when it is in your research station?”

Ghanaian farmers generally select maize varieties for their adaptation to specific local environments. But as Allen explains, average maize yields in Ghana, at 1–1.5 tonnes per hectare, are well below the global average of 5.2 tonnes per hectare.

Allen is looking forward optimistically to this next stage. “We have the capacity to more than double what we are producing now. The possibility is there, as long as farmers adopt the good materials.”

A ‘kick-start’ for plant science and for people

The catalytic effect of international funding programmes like GCP on small research laboratories in developing countries is often underestimated.

“We got GCP support to kick-start molecular biology research activities,” says Marian Quain, a senior research scientist at CRI. “It provided us with laboratory chemicals, reagent and equipment. My lab also received funding under the Genotyping Support Service initiative to characterise hundreds of sweetpotato, yam and cassava accessions.

“This support from GCP contributed immensely to transforming the lab.”

Ruth Prempeh – CRI researcher who was able to achieve her PhD with GCP support – hard at work collecting data in the field.

Ruth Prempeh – CRI researcher who was able to achieve her PhD with GCP support – hard at work collecting data in the field.

Funding injections can kick-start careers for young scientists too. In 2009, Ruth Prempeh received funding for her PhD, Genetic analysis of postharvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots, which was completed in 2013.

“From my thesis, l have prepared three manuscripts for publication. I have also had the opportunity to attend the three-year Integrated Breeding Multiyear Course, during which l acquired knowledge and skills in data analysis, interpretation and management and also in using modern technologies for crop improvement,” says Ruth.

“This has been very useful and has really had an impact on my career, making me what l am today. With this, l know l have a great future and I believe l will achieve great things. I am really proud to have been associated with GCP and very grateful for the opportunity.”

More links

Photo: William Haun/Flickr (Creative Commons)

Cassava flour on sale in Ghana.

Oct 122015
 

 

Photo: One Acre Fund/Flickr (Creative Commons)

A Kenyan farmer harvesting her maize.

“The map of Kenya’s maize-growing regions mirrors the map of the nation’s acid soils.”

So says Dickson Ligeyo, senior research officer at the Kenya Agricultural and Livestock Research Organisation (KALRO; formerly the Kenya Agricultural Research Institute, or KARI), who believes this paints a sombre picture for his country’s maize farmers.

Maize is a staple crop for Kenyans, with 90 percent of the population depending on it for food. However, acid soils cause yield losses of 17–50 percent across the nation.

Soil acidity is a major environmental and economic concern in many more countries around the world. The availability of nutrients in soil is affected by pH, so acid conditions make it harder for plants to get a balanced diet. High acidity causes two major problems: perilously low levels of phosphorus and toxically high levels of aluminium. Aluminium toxicity affects 38 percent of farmland in Southeast Asia, 31 percent in Latin America and 20 percent in East Asia, sub-Saharan Africa and North America.

Aluminium toxicity in soil comes close to rivalling drought as a food-security threat in critical tropical food-producing regions. By damaging roots, acid soils deprive plants of the nutrients and water they need to grow – a particularly bitter effect when water is scarce.

Maize, meanwhile, is one of the most economically important food crops worldwide. It is grown in virtually every country in the world, and it is a staple food for more than 1.2 billion people in developing countries across sub-Saharan Africa and Latin America. In many cultures it is consumed primarily as porridge: polenta in Italy; angu in Brazil; and isitshwala, nshima, pap, posho,sadza or ugali in Africa.

Photo: Allison Mickel/Flickr (Creative Commons)

Ugali, a stiff maize porridge that is a staple dish across East Africa, being prepared in Tanzania.

Maize is also a staple food for animals reared for meat, eggs and dairy products. Around 60 percent of global maize production is used for animal feed.

The world demand for maize is increasing at the same time as global populations burgeon and climate changes. Therefore, improving the ability of maize to withstand acid soils and produce higher yields with less reliable rainfall is paramount. This is why the CGIAR Generation Challenge Programme (GCP) invested almost USD 12.5 million into maize research between 2004 and 2014.

GCP’s goal was to facilitate the use of genetic diversity and advanced plant science to improve food security in developing countries through the breeding of ‘super’ crops – including maize – able to tolerate drought and poor soils and resist diseases.

 By weight, more maize is produced each year than any other grain: global production is more than 850 million tonnes. Maize production is increasing at twice the annual rate of rice and three times that of wheat. In 2020, demand for maize in developing countries alone is expected to exceed 500 million tonnes and will surpass the demand for both rice and wheat.  This projected rapid increase in demand is mainly because maize is the grain of choice to feed animals being reared for meet – but it is placing strain on the supply of maize for poor human consumers. Demand for maize as feed for poultry and pigs is growing, particularly in East and Southeast Asia, as an ever-increasing number of people in Asia consume meat. In some areas of Asia, maize is already displacing sorghum and rice. Acreage allocated to maize production in South and Southeast Asia has been expanding by 2.2 percent annually since 2001. In its processed form, maize is also used for biofuel (ethanol), and the starch and sugars from maize end up in beer, ice cream, syrup, shoe polish, glue, fireworks, ink, batteries, mustard, cosmetics, aspirin and paint.

Researchers take on the double whammy of acid soils and drought

Part of successfully breeding higher-yielding drought-tolerant maize varieties involves improving plant genetics for acid soils. In these soils, aluminium toxicity inhibits root growth, reducing the amount of water and nutrients that the plant can absorb and compounding the effects of drought.

Improving plant root development for aluminium tolerance and phosphorous efficiency can therefore have the positive side effect of higher plant yield when water is limited.

Photo: A Wangalachi/CIMMYT

A farmer in Tanzania shows the effects of drought on her maize crop. The maize ears are undersized with few grains.

Although plant breeders have exploited the considerable variation in aluminium tolerance between different maize varieties for many years, aluminium toxicity has been a significant but poorly understood component of plant genetics. It is a particularly complex trait in maize that involves multiple genes and physiological mechanisms.

The solution is to take stock of what maize germplasm is available worldwide, characterise it, clone the sought-after genes and implement new breeding methods to increase diversity and genetic stocks.

Scientists join hands to unravel maize complexity

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) got their heads together between 2005 and 2008 to itemise what maize stocks were available.

Marilyn Warburton, then a molecular geneticist at CIMMYT, led this GCP-funded project. Her goal was to discover how all the genetic diversity in maize gene-bank collections around the globe might be used for practical plant improvement. She first gathered samples from gene banks all over the world, including those of CIMMYT and the International Institute of Tropical Agriculture (IITA). Scientists from developing country research centres in China, India, Indonesia, Kenya, Nigeria, Thailand and Vietnam also contributed by supplying DNA from their local varieties.

Photo: X Fonseca/CIMMYT

Maize diversity.

Researchers then used molecular markers and a bulk fingerprinting method – which Marilyn was instrumental in developing – for three purposes: to characterise the structure of maize populations, to better understand how maize migrated across the world, and to complete the global picture of maize biodiversity. Scientists were also using markers to search for new genes associated with desirable traits.

Allen Oppong, a maize pathologist and breeder from Ghana’s Crops Research Institute (CRI), of the Council for Scientific and Industrial Research, was supported by GCP from 2007 to 2010 to characterise Ghana’s maize germplasm. Trained in using the fingerprinting technique, Allen was able to identify distinctly different maize germplasm in the north of Ghana (with its dry savanna landscape) and in the south (with its high rainfall). He also identified mixed germplasm, which he says demonstrates that plant germplasm often finds its way to places where it is not suitable for optimal yield and productivity. Maize yields across the country are low.

Stocktaking a world’s worth of maize for GCP was a challenge, but not the only one, according to Marilyn. “In the first year it was hard to see how all the different partners would work together. Data analysis and storage was the hardest; everyone seemed to have their own idea about how the data could be stored, accessed and analysed best.

“The science was also evolving, even as we were working, so you could choose one way to sequence or genotype your data, and before you were even done with the project, a better way would be available,” she recalls.

Photo: N Palmer/CIAT

Maize ears drying in Ghana.

Comparing genes: sorghum gene paves way for maize aluminium tolerance

In parallel to Marilyn’s work, scientists at the Brazilian Corporation of Agricultural Research (EMBRAPA) had already been advancing research on plant genetics for acid soils and the effects of aluminium toxicity on sorghum – spurred on by the fact that almost 70 percent of Brazil’s arable land is made up of acid soils.

What was of particular interest to GCP in 2004 was that the Brazilians, together with researchers at Cornell University in the USA, had recently mapped and identified the major sorghum aluminium tolerance locus AltSB, and were working on isolating the major gene within it with a view to cloning it. Major genes were known to control aluminium tolerance in sorghum, wheat and barley and produce good yields in soils that had high levels of aluminium. The gene had also been found in rape and rye.

GCP embraced the opportunity to fund more of this work with a view to speeding up the development of maize – as well as sorghum and rice – germplasm that can withstand the double whammy of acid soils and drought.

Photo: L Kochian

Maize trials in the field at EMBRAPA. The maize plants on the left are aluminium-tolerant and so able to withstand acid soils, while those on the right are not.

Leon Kochian, Director of the Robert W Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service and Professor at Cornell University, was a Principal Investigator for various GCP research projects investigating how to improve grain yields of crops grown in acid soils. “GCP was interested in our work because we were working with such critical crops,” he says.

“The idea was to use discoveries made in the first half of the GCP’s 10-year programme – use comparative genomics to look into genes of rice and maize to see if we can see relations in those genes – and once you’ve cloned a gene, it is easier to find a gene that can work for other crops.”

The intensity of GCP-supported maize research shifted up a gear in 2007, after the team led by Jurandir Magalhães, research scientist in molecular genetics and genomics of maize and sorghum at EMBRAPA, used positional cloning to identify the major sorghum aluminium tolerance gene SbMATE responsible for the AltSB aluminium tolerance locus. The team comprised researchers from EMBRAPA, Cornell, the Japan International Research Center for Agricultural Sciences (JIRCAS) and Moi University in Kenya.

By combing the maize genome searching for a similar gene to sorghum’s SbMATE, Jurandir’s EMBRAPA colleague Claudia Guimarães and a team of GCP-supported scientists discovered the maize aluminium tolerance gene ZmMATE1. High expression of this gene, first observed in maize lines with three copies of ZmMATE1, has been shown to increase aluminium tolerance.  ZmMATE1 improves grain yields in acid soil by up to one tonne per hectare when introgressed in an aluminium-sensitive line.

Photos: 1 – V Alves ; 2 – F Mendes; both edited by C Guimarães

The genetic region, or locus, containing the ZmMATE1 aluminium tolerance gene is known as qALT6. Photo 1 shows a rhyzobox containing two layers of soil: a corrected top-soil and lower soils with 15 percent aluminium saturation. On the right, near-isogenic lines (NILs) introgressed with qALT6 show deeper roots and longer secondary roots in the acidic lower soil, whereas on the left the maize line without qALT6, L53, shows roots mainly confined to the corrected top soil. Photo 2 shows maize ears from lines without qALT6 (above) and with qALT6 (below); the lines with qALT6 maintain their size and quality even under high aluminium levels of 40 percent aluminium saturation.

The outcomes of these GCP-supported research projects provided the basic materials, such as molecular markers and donor sources of the positive alleles, for molecular-breeding programmes focusing on improving maize production and stability on acid soils in Latin America, Africa and other developing regions.

Kenya deploys powerful maize genes

One of those researchers crucial to achieving impact in GCP’s work in maize was Samuel (Sam) Gudu of Moi University, Kenya. From 2010 he was the Principal Investigator for GCP’s project on using marker-assisted backcrossing (MABC) to improve aluminium tolerance and phosphorous efficiency in maize in Kenya. This project combined molecular and conventional breeding approaches to speed up the development of maize varieties adapted to the acid soils of Africa, and was closely connected to the other GCP comparative genomics projects in maize and sorghum.

MABC is a type of marker-assisted selection (see box), which Sam’s team – including Dickson Ligeyo of KALRO – used to combine new molecular materials developed through GCP with Kenyan varieties. They have thus been able to significantly advance the breeding of maize varieties suitable for soils in Kenya and other African countries.

Marker-assisted selection helps breeders like Sam Gudu more quickly develop plants that have desirable genes. When two plants are sexually crossed, both positive and negative traits are inherited. The ongoing process of selecting plants with more desirable traits and crossing them with other plants to transfer and combine such traits takes many years using conventional breeding techniques, as each generation of plants must be grown to maturity and phenotyped – that is, the observable characteristics of the plants must be measured to determine which plants might contain genes for valuable traits.   By using molecular markers that are known to be linked to useful genes such as ZmMATE1, breeders can easily test plant materials to see whether or not these genes are present. This helps them to select the best parent plants to use in their crosses, and accurately identify which of the progeny have inherited the gene or genes in question without having to grow them all to maturity. Marker-assisted selection therefore reduces the number of years it takes to breed plant varieties with desired traits.

Maize and Comparative Genomics were two of seven Research Initiatives (RIs) where GCP concentrated on advancing researchers’ and breeders’ skills and resources in developing countries. Through this work, scientists have been able to characterise maize germplasm using improved trait observation and characterisation methods (phenotyping), implement molecular-breeding programmes, enhance strategic data management and build local human and infrastructure capacity.

The ultimate goal of the international research collaboration on comparative genomics in maize was to improve maize yields grown on acidic soils under drought conditions in Kenya and other African countries, as well as in Latin America. Seven institutes partnered up to for the comparative genomics research: Moi University, KALRO, EMBRAPA, Cornell University, the United States Department of Agriculture (USDA), JIRCAS and the International Rice Research Institute (IRRI).

“Before funding by GCP, we were mainly working on maize to develop breeding products resistant to disease and with increased yield,” says Sam. “At that time we had not known that soil acidity was a major problem in the parts of Kenya where we grow maize and sorghum. GCP knew that soil acidity could limit yields, so in the work with GCP we managed to characterise most of our acid soils. We now know that it was one of the major problems for limiting the yield of maize and sorghum.

“The relationship to EMBRAPA and Cornell University is one of the most important links we have. We developed material much faster through our collaboration with our colleagues in the advanced labs. I can see that post-GCP we will still want to communicate and interact with our colleagues in Brazil and the USA to enable us to continue to identify molecular materials that we discover,” he says. Sam and other maize researchers across Kenya, including Dickson, have since developed inbred, hybrid and synthetic varieties with improved aluminium tolerance for acid soils, which are now available for African farmers.

Photo: N Palmer/CIAT

A Kenyan maize farmer.

“We crossed them [the new genes identified to have aluminium tolerance] with our local material to produce the materials we required for our conditions,” says Sam.

“The potential for aluminium-tolerant and phosphorous-efficient material across Africa is great. I know that in Ethiopia, aluminium toxicity from acid soil is a problem. It is also a major problem in Tanzania. It is a major problem in South Africa and a major problem in Kenya. So our breeding work, which is starting now to produce genetic materials that can be used directly, or could be developed even further in these other countries, is laying the foundation for maize improvement in acid soils.”

Sam is very proud of the work: “Several times I have felt accomplishment, because we identified material for Kenya for the first time. No one else was working on phosphorous efficiency or aluminium tolerance, and we have come up with materials that have been tested and have become varieties. It made me feel that we’re contributing to food security in Kenya.”

Photo: N Palmer/CIAT

Maize grain for sale.

Maize for meat: GCP’s advances in maize genetics help feed Asia’s new appetites

Reaping from the substantial advances in maize genetics and breeding, researchers in Asia were also able to enhance Asian maize genetic resources.

Photo: D Mowbray/CIMMYT

A pig roots among maize ears on a small farm in Nepal.

Bindiganavile Vivek, a senior maize breeder for CIMMYT based in India, has been working with GCP since 2008 on improving drought tolerance in maize, especially for Asia, for two reasons: unrelenting droughts and a staggering growth the importance of maize as a feedstock. This work was funded by GCP as part of its Maize Research Initiative.

“People’s diets across Asia changed after government policies changed in the 1990s. We had a more free market economy, and along with that came more money that people could spend. That prompted a shift towards a non vegetarian diet,” Vivek recounts.

“Maize, being the number one feed crop of the world, started to come into demand. From the year 2000 up to now, the growing area of maize across Asia has been increasing by about two percent every year. That’s a phenomenal increase. It’s been replacing other crops – sorghum and rice. There’s more and more demand.

“Seventy percent of the maize that is produced in Asia is used as feed. And 70 percent of that feed is poultry feed.”

In Vietnam, for example, the government is actively promoting the expansion of maize acreage, again displacing rice. Other Asian nations involved in the push for maize include China, Indonesia and The Philippines.

Photo: A Erlangga/CIFOR

A farmer in Indonesia transports his maize harvest by motorcycle.

The problem with this growth is that 80 percent of the 19 million hectares of maize in South and Southeast Asia relies on rain as its only source of water, so is prone to drought: “Wherever you are, you cannot escape drought,” says Vivek. And resource-poor farmers have limited access to improved maize products or hybrids appropriate for their situation.

Vivek’s research for GCP focused on the development – using marker-assisted breeding methods, specifically marker-assisted recurrent selection (MARS) – of new drought-tolerant maize adapted to many countries in Asia. His goal was to transfer the highest expression of drought tolerance in maize into elite well-adapted Asian lines targeted at drought-prone or water-constrained environments.

Asia’s existing maize varieties had no history of breeding for drought tolerance, only for disease resistance. To make a plant drought tolerant, many genes have to be incorporated into a new variety. So Vivek asked: “How do you address the increasing demand for maize that meets the drought-tolerance issue?”

The recent work on advancing maize genetics for acid soils in the African and Brazilian GCP projects meant it was a golden opportunity for Vivek to reap some of the new genetic resources.

“This was a good opportunity to use African germplasm, bring it into India and cross it to some Asia-adapted material,” he says.

Photo: E Phipps/CIMMYT

Stored maize ears hanging in long bunches outside a house in China.

A key issue Vivek faced, however, was that most African maize varieties are white, and most Asian maize varieties are yellow. “You cannot directly deploy what you breed in Africa into Asia,” Vivek says. “Plus, there’s so much difference in the environments [between Africa and Asia] and maize is very responsive to its environment.”

The advances in marker-assisted breeding since the inception of GCP contributed significantly towards the success of Vivek’s team.

“In collaboration with GCP, IITA, Cornell University and Monsanto, CIMMYT has initiated the largest public sector MARS breeding approach in the world,” says Vivek.

The outcome is good: “We now have some early-generation, yellow, drought-tolerant inbred germplasm and lines suitable for Asia.

“GCP gave us a good start. We now need to expand and build on this,” says Vivek.

GCP’s supported work laid the foundation for other CIMMYT projects, such as the Affordable, Accessible, Asian Drought-Tolerant Maize project funded by the Syngenta Foundation for Sustainable Agriculture. This project is developing yet more germplasm with drought tolerance.

A better picture: GCP brightens maize research

Dickson Ligeyo’s worries of a stormy future for Kenya’s maize production have lifted over the 10 years of GCP. At the end of 2014, Kenya had two new varieties that were in the final stage of testing in the national performance trials before being released to farmers.

“There is a brighter picture for Kenya’s maize production since we have acquired acid-tolerant germplasm from Brazil, which we are using in our breeding programmes,” Dickson says.

In West Africa, researchers are also revelling in the opportunity they have been given to help enhance local yields in the face of a changing climate. “My institute benefited from GCP not only in terms of human resource development, but also in provision of some basic equipment for field phenotyping and some laboratory equipment,” says Allen Oppong in Ghana.

“Through the support of GCP, I was able to characterise maize landraces found in Ghana using the bulk fingerprinting technique. This work has been published and I think it’s useful information for maize breeding in Ghana – and possibly other parts of the world.”

The main challenge now for breeders, according to Allen, is getting the new varieties out to farmers: “Most people don’t like change. The new varieties are higher yielding, disease resistant, nutritious – all good qualities. But the challenge is demonstrating to farmers that these materials are better than what they have.”

Photo: CIMMYT

This Kenyan farmer is very happy with his healthy maize crop, grown using an improved variety during a period of drought.

Certainly GCP has strengthened the capacity of researchers across Africa, Asia and Latin America, training researchers in maize breeding, data management, statistics, trial evaluations and phenotyping. The training has been geared so that scientists in developed countries can use genetic diversity and advanced plant science to improve crops for greater food security in the developing world.

Elliot Tembo, a maize breeder with the private sector in sub-Saharan Africa says: “As a breeder and a student, I have been exposed to new breeding tools through GCP. Before my involvement, I was literally blind in the use of molecular tools. Now, I am no longer relying only on pedigree data – which is not always reliable – to classify germplasm.”

Allen agrees: “GCP has had tremendous impact on my life as a researcher. The capacity-building programme supported my training in marker-assisted selection training at CIMMYT in Mexico. This training exposed me to modern techniques in plant breeding and genomics. Similarly, it built my confidence and work efficiency.”

There is no doubt that GCP research has brightened the picture for maize research and development where it is most needed: with researchers in developing countries where poor farmers and communities rely on maize as their staple food and main crop.

More links

Photo: N Palmer/CIAT

A farmer displays maize harvested on his farm in Laos.

Oct 092015
 

 

Photo: IITA

Elizabeth Parkes

Elizabeth Parkes grew up in Ghana as the youngest child and only girl in a middle-class family of nine children. Through visiting poor communities with her family, she began from an early age to build her understanding of the lives of resource-poor families in this part of West Africa and their need for reliable and nutritious food.

She also knows first-hand the important role women play on a farm and in a family. “Rural families are held together by women, so if you are able to change their lot, you can make a real mark,” says Elizabeth.

It was this sense of social conscience that drew her to a career in agricultural research: “My father, a Regional Education Officer, was not very amused; he thought agricultural research was a man’s job!” she recalls.

But Elizabeth was on a mission. “I see African communities where poverty and hunger are seemingly huge problems with no way out,” she says. “If I put in enough effort, I can bring some solutions. My primary target group is the less privileged, and women in particular have been my friends throughout. This sometimes means subtly getting the men to consider some changes in roles.”

This sense of destiny led to Elizabeth gaining a Bachelor’s degree in Agriculture, a Diploma in Education and a Master’s in Crop Science.

Meet Elizabeth in the complete podcast below (or see a playlist on PodOmatic)  – and be inspired by her warmth and passion!

 

Photo: IITA

A worker in a Ghanaian cooperative producing garri, or gari, a kind of granular cassava flour used to prepare a range of foods.

Turning point: cassava to help the vulnerable

During a stint of national service between academic degrees, she was based in the tiny poor village of Aworowa in the Brong Ahafo Region. There was no electricity in her room, and the street lights came on once a week.

Photo: Tini Maier/Flickr (Creative Commons)

In a poor Ghanaian community everyone has to pitch in to the heavy daily round of chores.

“We all fetched water from the stream to drink and cook,” Elizabeth recalls. The plight of the villagers inspired Elizabeth to approach a scientist engaged in root and tuber projects at the Crops Research Institute (CRI) of Ghana’s Council for Scientific and Industrial Research (CSIR). She offered to carry out some research on cassava, hoping this might help the local people.

“I saw the struggle for households,” says Elizabeth. “I lived with them for one year, which transformed my interest and focus onto the vulnerable and less privileged.”

As a result, Elizabeth established CRI cassava trials in the region, and these trials continue today with Elizabeth still in touch with the villagers.

When her year of national service finished, Elizabeth was appointed as Assistant Research Officer at CRI – their first woman to be assigned to a research project. Already, she was beginning to fulfil her destiny.

Photo: IITA

Healthy cassava plants.

Challenges and opportunities

Photo: IITA

Unlike most crops, cassava is propagated, not by seed, but using cut sections of stem like these – just one of the many challenges this previously neglected crop offers breeders.

But cassava is not the easiest crop for a young researcher to cut their teeth on. It has long been regarded as an ‘orphan’ crop – one that researchers and funders have forgotten in their drive to work with the higher profile crops of wheat, rice and maize.

Cassava is a challenging crop for breeders to work with. “In addition to factors such as pests and disease, cassava is a long-season and very labour-intensive crop. It can take a whole year before you can expect to reap any rewards, and if you don’t have a strong team who can step in at different points throughout the breeding process, you can often find unexpected results at the end of it, and then you have to start all over again,” Elizabeth says.

But while many other young researchers gave up on with cassava, Elizabeth stuck with it, knowing the importance of this crop to farmers, especially women. And this is where Elizabeth’s involvement with the CGIAR Generation Challenge Programme (GCP) really started to make a difference to her future.

During GCP’s first research phase, Elizabeth’s path crossed with GCP scientist Martin Fregene, who encouraged Elizabeth to lead the Ghana partners involved in GCP’s cassava projects. She soon climbed the GCP research ranks, receiving multiple study grants, managing projects, and mixing and mingling with elite scientists. Along the way, Elizabeth also learnt new molecular breeding techniques. More recently, she was appointed Ghana’s lead researcher for GCP’s Phase II Cassava Research Initiative.

A place at the table, and sharing joy

Photo: IITA


Elizabeth Parkes examines a healthy crop of monster roots from an improved cassava variety.

Elizabeth believes the support GCP gave her to develop her skills and capacity is what has made a difference to her own and others’ destinies as research scientists: “GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner. I see GCP as the pace setters.

Elizabeth Parkes quote 2

“GCP gave you the keys to solving your own problems and put structures in place so that knowledge learnt abroad could be transferred and applied at home.

“When I first joined GCP,” Elizabeth recalls, “I saw myself as somebody from a national research programme being given a place at the table; my inputs were recognised and what I said carried weight in decision-making.”

Elizabeth has attended three GCP Annual (later General) Research Meetings and won awards for her posters. “This greatly boosted my confidence,” she says. She is an active member of the Cassava Community of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – which facilitates and supports the integration of marker-assisted selection into cassava breeding. All this has accelerated Elizabeth’s quest to produce and disseminate farmer-preferred cassava varieties that are resistant to pests and diseases.

Elizabeth Parkes quote 3“With the Community of Practice you can call on other scientists; you share talk, you share ideas, you share joy. We share everything together,” Elizabeth enthuses. ‘Joy’ is a word that is often on Elizabeth’s lips when she describes the help that GCP has given her and others.

“We are all forever grateful to GCP and its funders. GCP has had a huge impact on research in Ghana, especially for cassava, rice, maize and yam. All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

Photo: A Hoel/World Bank

A farmer in Benin transforms cassava into garri, or gari, used as the basis of many different dishes.

Elizabeth Parkes quoteIn less than a decade, Elizabeth has become a valued researcher at CRI (currently on secondment at the International Institute of Tropical Agriculture, IITA) as well as Ghana’s leading GCP-supported scientist working on cassava. But in fulfilling her own destiny, she’s also passionate about helping others to achieve their potential.

“Building human capacity is my greatest joy,” she says. Farmers, breeders and a Ghanaian private-sector company are just a few of the fortunate beneficiaries of her expertise over recent years.

“Wherever I go, whatever opportunity I have, I refer back to GCP and its capacity-building work. You see, it’s good to release new plant varieties, but it’s also good to release people who will do the job.”

Nurturing women

Photo: O Girard/CIFOR

Angelique Ipanga tends her cassava plants in the Democratic Republic of Congo. Cassava is often seen as a “women’s crop,” and the work of cultivating and preparing it falls largely on women’s shoulders.

Elizabeth talks about one of her favourite people, a farmer called Bea: “She’s very serious. She wants to learn more and she keeps expanding her farm.”

Bea hadn’t planted cassava before, so she pestered Elizabeth to find out more about how to do it properly. With Elizabeth’s guidance, Bea’s cassava-growing skills flourished, and she became so successful that she was recognised as the best farmer in her community.

“These are things that make me glad… that at least I have impacted somebody who hadn’t planted cassava before, and it’s amazing,” says Elizabeth. “There are people out there who need us, and when we give them our best, they will give the world their best as well.”

Elizabeth is also passionate about helping other women researchers: “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling.”

And so Elizabeth is now herself firmly established in world-class agricultural research, and further interesting stories are sure to follow.

“Before GCP we really struggled, but now everybody wants to have training in Ghana. Everybody wants to have something to do with us, and I will always say thank you to GCP for that, for making us attractive as researchers,” Elizabeth says.

“I’ve stuck with cassava because that’s my destiny! I may add other root and tuber crops, but cassava is my pivot.”

More links

Oct 072015
 

Young Nigerian scientists often leave Africa and look for jobs with international research agencies overseas. But with the CGIAR Generation Challenge Programme (GCP)-funded Cassava Research Initiative (RI), two young nationals have been leading the international collaboration and injecting confidence into Africa’s research capacity.

Leadership is a quality admired and consistently sought after, particularly when overcoming a challenge. Some leaders direct from afar; others rise through the ranks and work with their peers on the ground – winning respect from the people they lead as they get their hands dirty.

Photo: G Norton

Dream team: Emmanuel Okogbenin (left) and Chiedozie Egesi (right), both of Nigeria’s National Root Crops Research Institute.

“If you want to work for the people, you have to walk with the people – that’s an African concept,” says Emmanuel Okogbenin, a plant breeder and geneticist at Nigeria’s National Root Crops Research Institute (NRCRI). “Then when you work with the people, you really understand what they want. When you speak, they know they can trust you.”

This powerful sentiment is one reason why GCP sought the collaboration of NRCRI in overcoming the challenge of sustaining Africa’s, and indeed the world’s, cassava production.

Having started as a small farm in 1923, NRCRI has taken giant strides to become one of Nigeria’s best research institutes, contributing immensely to the country’s economic development and making it the leading producer of cassava in the world. NRCRI Executive Director Julius Chukwuma Okonkwo says, “This would not have been attainable if not for the trust and support that GCP had in us when they made two of our young cassava researchers the leaders of an international collaboration.”

The two researchers to whom Julius refers are Emmanuel and his colleague Chiedozie Egesi, also a plant breeder and geneticist at NRCRI. Their combined 36 years’ of cassava research experience is matched by their passion to get the best out of Nigeria’s main staple crop.

And they are happy to get some dirt under their fingernails. “It’s just as important to work with the farmers in the field and understand what they want, as it is to do the research in the lab,” says Emmanuel. “At the end of the day we need to please the farmers, as they are the ones who will be using the new varieties that we are developing to sustain their livelihoods.”

Photo: IITA

Nigerian farmers display their cassava harvest.

Developing and leading Africa’s cassava research

Between 2010 and 2014, both Emmanuel and Chiedozie led three different projects within GCP’s Cassava RI, working with other colleagues in national breeding programmes in Ghana, Tanzania and Uganda, as well as the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT), the Brazilian Corporation of Agricultural Research (EMBRAPA) and Cornell University in the USA. The aim of the initiative was to use molecular-breeding techniques to accelerate the development of high-starch cassava varieties with resistance to diseases and tolerance to drought – and so ensure both food supplies and income for farmers.

Meet Chiedozie and Emmanuel in the video playlist below, learn more about cassava in Africa, and hear all about their research (or watch on Youtube):

Emmanuel explains that before GCP, “most African national programmes didn’t really have established crop-breeding programmes, and didn’t have the resources” to do the scale of research GCP assisted with. Nor did they have the capacity to use molecular-breeding techniques, which can potentially halve the time it takes to develop new varieties.

With help from GCP and CIAT, NRCRI was able to equip a new molecular-breeding laboratory, and staff were trained to incorporate molecular-breeding techniques into their breeding programme. “GCP was there not only to provide technology, but also to guide us in how to operate that technology,” explains Chiedozie.

Julius points out that both Chiedozie and Emmanuel were also influential in disseminating this knowledge and, in turn, building and sustaining NRCRI’s human capacity. “They both mentored many young scientists who have chosen a career in cassava and molecular breeding because of this.”

Photo: IITA

Transporting a bountiful cassava harvest from farm to market in Nigeria.

With training and infrastructure in place, NRCRI led an international collaboration that in 2010 released Africa’s first cassava variety developed using molecular-breeding techniques. Known as UMUCASS33 (or CR 41-10), it was resistant to cassava mosaic disease (CMD) – a devastating plant disease that can wipe out farmers’ entire cassava crops – and also highly nutritious. This was swiftly followed by a second similar variety, CR 36-5, and supplied to farmers.

Between this landmark release and GCP’s close in 2014, the cassava team had already released nearly 20 higher yielding, more nutritious varieties resistant to diseases and pests, and had begun working on developing drought-tolerant varieties.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold: “Through these materials, people’s livelihoods can be improved. The food people grow should be nutritious, resistant and high-yielding enough to allow them to sell some of it and make money for other things in life, such as building a house, getting a motorbike or sending their kids to school.” This social aspect is particularly pertinent in Nigeria, where these cassava varieties will have the greatest impact.

Five years, 20 new varieties for African farmers Between 2010 and 2014, NRCRI and its collaborators developed and released multiple new cassava varieties with a combination of traits. This work has continued after the closure of GCP, with more releases in the pipeline. Disease and pest resistance During 2010-2014 the team released several varieties of cassava resistant to cassava mosaic disease (CMD) for different environments in Nigeria, Ghana, Uganda and Tanzania as well as several varieties resistant to cassava brown streak disease (CBSD) – a similarly devastating disease originating in Tanzania but quickly spreading into Uganda and further west. They have also developed new varieties with combined resistance to CMD and CBSD. These have the potential to double the yield of existing commercial varieties. The team has also worked with Tanzanian breeders to develop cassava varieties that are resistant to bacterial blight and green mites. These new Tanzanian varieties are on their way to commercial breeders and will be available to farmers by 2015–16. High starch content In 2012 the team released a variety with very high starch content – an essential element of good cassava.  Improved nutrition In 2011, the NRCRI team, together with IITA and HarvestPlus (another CGIAR Challenge Programme focussed on the nutritional enrichment of crops), released three cassava varieties rich in pro-vitamin A, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A requirement. Since then, the team has aimed to increase this figure to 50 percent. In 2014, they released three more pro-vitamin A varieties with higher concentrations of beta-carotene.

Feeding a giant

Photo: IITA

Nigerian farmer with his bountiful cassava harvest.

Nigeria is often referred to as the ‘Giant of Africa’. It is the most populous African country, with over 174 million inhabitants. The population’s main staple food is cassava, making Nigeria the world’s largest producer and consumer of the crop. At the same time, the country imports almost USD 4 billion of wheat every year – a figure that is expected to quadruple by 2030 if wheat consumption continues to grow at the same rate it is today.

The government is wary of this ‘overreliance’ on imported grain and is working towards making the country less reliant on wheat by imposing a wheat tariff. It also hopes to boost cassava production and commercialisation by promoting 20 percent substitution of cassava flour for wheat in breadmaking.

“The government feels that to quickly change the fortunes of farmers, cassava is the way to go,” explains Emmanuel, who liaises with the Nigerian Government to promote to farmers the benefit of cassava varieties with high starch concentrations. It is the flour from these varieties that is being used to partially replace wheat flour to make bread. GCP support has been crucial here too, in providing vital scientific information to the government. Emmanuel explains: “The tariff from wheat is expected to be ploughed back to support agricultural development – especially in the cassava sector – as the government seeks to increase cassava production to support flour mills.”

Cassava offers a huge opportunity to transform the agricultural economy, stimulate rural development and further improve Nigeria’s gross domestic product. In 2014, Nigeria’s economy surpassed that of South Africa’s to become the largest on the continent. By 2050, Nigeria is expected to rise further and become one of the world’s top 20 economies.

Unfortunately, however, like many growing economies worldwide, Nigeria is still working to address severe inequality, including in the distribution of wealth and in feeding the country’s expanding population.

Photo: IITA

A woman with her children at work in a cassava processing centre in Nigeria.

It’s a problem Chiedozie understands well: “Nigeria is an oil-producing country, but you still see grinding poverty in some cases,” he says. “Coming from a small town in the southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school,” he reveals. The poverty challenge, he explains, hits smallholder farmers particularly hard: “Urban development caught up with them in the end: some of them don’t even have access to the land that they inherited, so they’re forced to farm along the street.”

For Chiedozie, the seemingly bleak picture only served to ignite a fierce determination and motivation to act: “Despite the social injustice around me, I always thought there was opportunity to improve people’s lives.” And thus galvanised by the plight of Nigerian farmers, Chiedozie promptly shelved his plans for a career in medical surgery and pursued biological sciences and a PhD in crop genetics, a course he interspersed with training stints in the USA at Cornell University and the University of Washington, before returning to his homeland to accept a job as head of the cassava breeding team, and – following a promotion in 2010 – to become Assistant Director of the Biotechnology Department at NRCRI.

Empowering African researchers

Photo: IITA

Carrying cassava at a processing centre in Nigeria.

Emmanuel, who followed a similar educational route to Chiedozie, says both he and his colleague are exceptions to the norm in Africa, where African researchers tend to look for opportunities at international or private institutes rather than in national breeding programmes.

“It is difficult being a researcher in Africa,” says Emmanuel. “We don’t get paid as much as breeders in more developed countries, and funding is very hard to obtain.”

Emmanuel says his proudest moment was when GCP was looking for Africans to take up leadership roles. “They felt we could change things around and set a precedent to bring people back to the continent,” he says. “They appreciated our values and the need to install African leaders on the ground in Africa rather than in Europe, Asia or the Americas.”

Jean-Marcel Ribaut, GCP’s Director, says that seeking this local leadership was a novel approach for a transnational programme like GCP at the time, and proved to be an imperative feature for all GCP Research Initiatives. “The reasoning behind the approach is two-fold: Firstly, it’s important that our national partners share in feeling ownership of the projects and outcomes; secondly, they are gaining experience in the role so they can continue to do so after the close of the Programme in 2014,” he says. “We feel that most of our leading institutes, NRCRI included, are in a better position now than when they joined the project, and that this, along with their experience, has already gained them more exposure and funding opportunities.”

This is indeed true of the NRCRI cassava team, which is engaging with the Bill & Melinda Gates Foundation, Cornell University, IITA and Uganda’s National Crop Resources Research Institute in an initiative that Chiedozie promises will be at the front of cutting-edge technology. “We are still working out specifics, but it will see us continuing to use marker-assisted breeding techniques to develop higher yielding, stress-tolerant cassava varieties.”

Chiedozie adds this would not have been possible without GCP, which helped them to develop their capacity in Nigeria and in Africa, and this has “created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Photo: IITA

Before GCP came along, cassava was something of an orphan crop in agricultural research. Among the challenges to efficient breeding of cassava are that it is slow to grow and is propagated, not by seed, but using cut sections of stem like those shown. But with investment and capacity building from GCP, particularly in molecular breeding tools, African cassava scientists have gained a new confidence and prestige.

Continuing the momentum

One organisation that has been impressed by the work done at NRCRI is the CGIAR Research Program on Roots, Tubers and Bananas (RTB). RTB Director Graham Thiele has been following the work done at NRCRI since 2010 with great interest. “We have been really impressed to see a national programme like NRCRI playing a leading role in these successful GCP projects, and grow as a result of this,” he says.

One area of research that has particularly impressed Graham is Chiedozie and Emmanuel’s pre-emptive breeding for cassava brown streak disease (CBSD) resistance. “CBSD isn’t currently an issue in Nigeria but it has the potential to wipe out all crops, as it has in Uganda and Tanzania, if it continues to spread west from these countries,” he explains.

“What Chiedozie and Emmanuel are doing is using molecular markers, developed in collaboration with IITA, to search for genes in their varieties that confer resistance to brown streak virus. They can then use these when breeding for CBSD resistance without exposing cassava to the virus. It’s very exciting and forward thinking, as normally people breed for resistance only when the disasters happen.”

As GCP approached its sunset in December 2014, Chiedozie and Emmanuel were reaching out to RTB to seek funding to continue this and other projects they are currently working on. “They’ve already created some great varieties but have plenty more in the pipeline, so we want to help them finish this work and, most importantly, keep the momentum going,” says Graham.

Chiedozie looks forward to the next steps with optimism, confirming that the new collaboration will continue in the quest to “give African farmers varieties of cassava that they will love to grow.”

More links

Photo: IITA


Healthy improved cassava varieties growing in the field.

 

Oct 012015
 

 

Photo: C. Schubert/CCAFS

A farmer from Dodoma, Tanzania, an area where climate change is causing increasing heat and drought. Groundnut is an important crop for local famers, forming the basis of their livelihood together with maize and livestock.

If you don’t live with poor people, then your science is of no use to poor people. This is the very clear sentiment of Omari Mponda, one of Tanzania’s top groundnut researchers.

“Sometimes people do rocket science. But that’s not going to help the poor,” says Omari. “Scientists in labs are very good at molecular markers, but markers by themselves will not address the productivity on the ground. You cannot remove poverty through that alone.”

Omari is the Zonal Research Coordinator and plant breeder at Tanzania’s Agricultural Research Institute at Naliendele (ARI–Naliendele).

The passion and dedication of Omari and his colleagues at this East African research centre were the reason why, between 2008 and 2014, the CGIAR Generation Challenge Programme (GCP) provided funding for legumes research at ARI–Naliendele that especially targeted drought, as part of the Tropical Legumes I project. This project supplied national institutes across Africa, Asia and Latin America with training and infrastructure improvements that enabled local researchers to do more advanced plant science that could make a real difference to farmers.

Researchers like Omari, who are working on the ground in developing countries, are a crucial part of the global quest to develop solutions for future food security and improved livelihoods in these countries.

GCP set out to enhance the plant-breeding skills and capacity of researchers in developing nations, such as Tanzania, so that they can develop their own crop varieties that will cope with increasingly extreme drought conditions.

Photo: C Schubert/CCAFS

A farmer in dryland Tanzania shows off his groundnut crop.

“One thing that really energises me,” enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work and being given the chance to do the how.”

Hannibal, under his GCP remit, was asked to visit the research sites of GCP-funded projects at research centres and stations across Africa, to identify those where effective research might be hindered by significant gaps in three fundamental areas: infrastructure, equipment and support services. He selected 19 target research sites – in Burkina Faso, Ethiopia, Ghana, Kenya, Mali, Niger, Nigeria and Tanzania.

Photo: AgCommons

Hannibal Muhtar (left) and Omari Mponda at ARI–Naliendele.

Two of the locations chosen for some practical empowerment were in Tanzania, namely the ARI research sites at Naliendele and Mtwara, where simple infrastructure improvements like irrigation tubing and portable weather stations have made a surprising difference to the capacity of local researchers.

In developing countries like Tanzania, the obstacles to achieving research objectives are often quite mundane in nature: a faulty weather station, the lack of irrigation systems, or fields ravaged by weeds and in dire need of rehabilitation. Yet such factors compromise brilliant research.

Even a simple lack of fencing commonly results not only in equipment being stolen, but also in precious experimental crops being stomped on by roaming cattle and wild animals such as boars, monkeys, hippopotamuses and hyenas; this also poses a serious threat to the safety of field staff.

“The real challenge lies not in the science, but rather in the real nuts and bolts of getting the work done in local field conditions,” Hannibal explains.

He says: “If GCP had not invested in research support infrastructure and services, then their investment in research would have been in vain. Tools and services must be in place as and when needed, and in good working order. Tractors must be able to plough when they should plough.”

Bridging the gap between the lab and farmers

Since 2008, researchers at ARI–Naliendele in Tanzania have been working together with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to identify suitable groundnut breeding materials to help the country’s farmers improve crop yields. Currently, yields are at less than one-third of their potential.

“We are bridging the big science to the poor people, to see the real issues we should be addressing. You can have a very good resistant variety, but maybe that variety is not liked by farmers,” Omari says.

He recalls a case where one farmer who helped with variety selection for international research had identified a groundnut variety that was resistant to disease, but the shells were too difficult to crack.

“So that variety won’t help the poor, because he [the farmer] is not able to open the shell. So the breeder had to rethink, what trait could loosen, or make it easier to shell?” recounts Omari.

Photo: N Palmer/CIAT

Shelled groundnuts on sale in Ghana.

The mission of the 10-year GCP was to use genetic diversity and advanced plant science to improve crops in developing countries. More than 200 partners were involved in the programme, including members of the international CGIAR group plus academia and regional and national research programmes.

National institutes like Tanzania’s ARI–Naliendele, established in 1970, are essential linchpins between advanced research centres in developed countries and poor farmers around the world facing the day-to-day realities of climate change and plant pests and diseases.

“If each organisation works in isolation, they will spend a lot of money developing new varieties but nothing will change on the ground. So in actually working together through programmes like the GCP, we can see some change happening,” says Omari.

Through the GCP project, Tanzania’s groundnut researchers received 300 reference-set lines from ICRISAT, which were then phenotyped over three years (2008–2010) for both drought tolerance and disease resistance in order to select the most useful lines under local conditions. To help with this process, Tanzanian scientists and technicians travelled to ICRISAT headquarters in India, where they were trained in phenotyping: that is, how to identify and measure observable characteristics – in this case, traits relating to the plants’ abilities to cope with drought and disease.

After the researchers identified the best varieties, these were provided to participating farmers so they could trial them in their fields for selection in 2011–2012. Five new varieties have since been released to Tanzanian farmers based on this collaboration between ARI and ICRISAT.

Photo: A Masciarelli/FAO

A young groundnut plant.

Things are speeding up in Tanzania

For ARI–Naliendele, the laboratory and field infrastructure provided by GCP funding has helped accelerate the work of local researchers and breeders. It has been transformative for Tanzanian scientists, according to Omari.

“For example, irrigation is very costly, but with the GCP support for an irrigation system, we can fast track our work – we can come up with new varieties in a much shorter period. That is something that will change our lives,” says Omari.

“Groundnut has a very low multiplication ratio, so if you plant one kilogram, you will get only 10 kilograms next year,” he explains. “Ten kilograms in 12 months is not enough. With irrigation, it means that we can have at least two or three crops within a season. Some of the varieties we are developing can be fast tracked to the end users. The speed of getting varieties from the research to the farmers has increased by maybe three times.”

Photo: D Brazier/IWMI

Washing harvested groundnuts, Zimbabwe.

GCP also funded computers, measuring scales, laboratory equipment and a portable weather station, which all help to assure good, reliable information on phenotyping.

Scientists too have become quicker and better at their work from having more advanced skills, according to Omari: “We now have more competent groundnut breeders in Tanzania.

“Initially, we depended on germplasm being brought over by ICRISAT and somebody selecting varieties for us. But they have been training us to do our own crosses, so we can now decide what grows in our breeding programme,” he says.

“For us, it is a big achievement to be able to do national crosses. We are advancing toward being a functional breeding programme in Tanzania.

“These gains made are not only sustainable, but also give us independence and autonomy to operate. We developing-country scientists are used to conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding.”

Tanzania’s new zest for advanced plant breeding

Photo: N Palmer/CIAT

A farmer at work in her cassava field in northern Tanzania.

According to cassava breeder Geoffrey Mkamilo, a Principal Agricultural Research Officer at ARI: “There are some things that you just cannot do by conventional breeding.”

Usually researchers looking to breed better drought-tolerant and disease- and pest-resistant crops would use conventional breeding methods. This means researchers would be trying to pick out resilient plants by phenotyping alone, looking at how they are growing in the field under different conditions, which can take considerable time to deliver results – especially for crops that are slow to mature, like cassava.

Molecular breeding, on the other hand, involves using molecular markers to make the breeding process faster and more effective. These markers are genetic sequences known to be linked to useful genes that confer plant traits such as drought tolerance or disease resistance. Breeders can easily test small amounts of plant material for these markers, so they act like genetic ‘tags’, flagging up whether or not particular genes are present.

This knowledge helps breeders to efficiently select the best parent plants to use in their crosses, and accurately identify which of the progeny have inherited the gene or genes in question without having to grow them all to maturity. Phenotyping is still needed in discovering markers, linking genetic information with physical traits, and in testing the performance of materials in the field, but overall the time taken produce a new variety can be reduced by years.

“Before I started working with GCP, molecular breeding for me was very, very difficult… I wasn’t trained to become a molecular breeder. Now, with GCP, I can speak the same language,” Geoffrey says.

Photo: Kanju/IITA

A farmer carefully packs harvested cassava tubers for transportation to the market in Bungu, Tanzania.

Via GCP, Geoffrey had the opportunity to work with scientists based in Colombia at the International Center for Tropical Agriculture (CIAT) and in Nigeria at the International Institute of Tropical Agriculture (IITA), among other experts in research institutes across the world.

The team first began to release new cassava varieties developed using marker-assisted selection in 2011, with four varieties for two different Tanzanian environments. These varieties had manifold benefits: dual resistance to cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), and productivity potential of up to double the yield of existing commercial varieties.

The research continues to produce ever better cassava varieties, and in this endeavour Geoffrey cannot overemphasise the power of integrating conventional breeding practices with molecular breeding.

“I have received so many phone calls from farmers; they even call in the night. They say, ‘Geoffrey, we have heard that you have very good materials. Where do we get these materials?’ So many, many farmers are calling,” says Geoffrey. “Many, many organisations – even NGOs, they also call. They want these materials. And even the private sector calls. GCP has contributed tremendously to this.”

More links

Sep 282015
 

 

Photo: Agência BrasíliaSorghum is already a drought-hardy crop, and is a critical food source across Africa’s harsh, semi-arid regions where water-intensive crops simply cannot survive. Now, as rainfall patterns become increasingly erratic and variable worldwide, scientists warn of the need to improve sorghum’s broad adaptability to drought.

Crop researchers across the world are now on the verge of doing just that. Through support from the CGIAR Generation Challenge Programme (GCP), advanced breeding methods are enhancing the capacity of African sorghum breeders to deliver more robust varieties that will help struggling farmers and feed millions of poor people across sub-Saharan Africa.

Photo: ICRISAT

A farmer in her sorghum field in Tanzania.

Sorghum at home in Africa

From Sudanese savannah to the Sahara’s desert fringes, sorghum thrives in a diverse range of environments. First domesticated in East Africa some 6000 years ago, it is well adapted to hot, dry climates and low soil fertility, although still depends on receiving some rainfall to grow and is very sensitive to flooding.

In developed countries such as Australia, sorghum is grown almost exclusively to make feed for cattle, pigs and poultry, but in many African countries millions of poor rural people directly depend on the crop in their day-to-day lives.

Photo: ICRISAT

A Malian woman and her child eating sorghum.

In countries like Mali sorghum is an important staple crop. It is eaten in many forms such as couscous or (a kind of thick porridge), it is used for making local beer, and its straw is a vital source of feed for livestock.

While the demand for, and total production of, sorghum has doubled in West Africa in the last 20 years, yields have generally remained low due to a number of causes, from drought and problematic soils, to pests and diseases.

“In Mali, for instance, the average grain yield for traditional varieties of sorghum has been less than one tonne per hectare,” says Eva Weltzein-Rattunde, Principal Scientist for Mali’s sorghum breeding programme at the International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT).

In a continued quest to integrate ways to increase productivity, GCP launched its Sorghum Research Initiative (RI) in 2010. This aimed to investigate and apply the approaches by which genetics and molecular breeding could be used to improve sorghum yields through better adaptability, particularly in the drylands of West Africa where cropping areas are large and rainfall is becoming increasingly rare.

Kick starting the work was a GCP-funded collaboration between project Principal Investigator Niaba Témé, plant breeder at Mali’s Institut d’économie rurale (IER) and the RI’s Product Delivery Coordinator Jean-François Rami of the Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development), France, with additional support from the Syngenta Foundation for Sustainable Agriculture in Switzerland.

The collaboration aimed to develop ways to improve sorghum’s productivity and adaptation in the Sudano-Sahelian zone, starting with Mali in West Africa, and expanding later across the continent to encompass Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Photo: F Noy/UN Photo

A farmer harvest sorghum in Sudan.

Sorghum gains from molecular research

Since 2008, with the help of CIRAD and Syngenta, Niaba and his team at IER have been learning how to use molecular markers to develop improved sorghum germplasm through identifying parental lines that are more tolerant and better adapted to the arid and volatile environments of Mali.

The two breeding methods used in the collaboration are known as marker-assisted recurrent selection (MARS) and backcross nested association mapping (BCNAM).

MARS

Photo: N Palmer/CIAT“MARS identifies regions of the genome that control important traits,” explains Jean-François. “It uses molecular markers to explore more combinations in the plant populations, and thus increases breeding efficiency.”

Syngenta, he explains, became involved through its long experience in implementing MARS in maize.

“Syngenta advised the team on how to conduct MARS and ways we could avoid critical pitfalls,” he says. “They gave us access to using the software they have developed for the analysis of data, and this enabled us to start the programme immediately.”

With the help of the IER team, two bi-parental populations from elite local varieties were developed, targeting two different environments found in sorghum cropping areas in Mali. “We were then able to use molecular markers through MARS to identify and monitor key regions of the genome in consecutive breeding generations,” says Jean-François.

“When we have identified the genome regions on which to focus, we cross the progenies and monitor the resulting new progenies,” he says. “The improved varieties subsequently go to plant breeders in Mali’s national research program, which will later release varieties to farmers.”

Jean-François is pleased with the success of the MARS project so far. “The development of MARS addressed a large range of breeding targets for sorghum in Mali, including adaptation to the environment and grain productivity, as well as grain quality, plant morphology and response to diseases,” he says. “It proved to be efficient in elucidating the complex relationships between the large number of traits that the breeder has to deal with, and translating this into target genetic ideotypes that can be constructed using molecular markers.”

Jean-François says several MARS breeding lines have already shown superior and stable performance in farm testing as compared to current elite lines, and these will be available to breeders in Mali in 2015 to develop new varieties.

Photo: ICRISAT

Eva Weltzein-Rattunde examines sorghum plants with farmers in Mali.

BCNAM

Like MARS, the BCNAM approach shows promise for being able to quickly gain improvements in sorghum yield and adaptability to drought, explains Niaba, who is Principal Investigator of the BCNAM project. BCNAM may be particularly effective, he says, in developing varieties that have the grain quality preferences of Malian farmers, as well as the drought tolerance that has until now been unavailable.

“BCNAM involves using an elite recurrent parent that is already adapted to local drought conditions, then crossing it with several different specific or donor parents to build up larger breeding populations,” he explains. “The benefit of this approach is it can lead to detecting elite varieties much faster.”

Eva and her team at ICRISAT have also been collaborating with researchers at IER and CIRAD on the BCNAM project. The approach, she says, has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project,” she says. “Overall, we feel the experience is enhancing our capacity here, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Indeed, during field testing in Mali, BCNAM lines derived from the elite parent variety Grinkan have produced more than twice the yields of Grinkan itself. As they are rolled out in the form of new varieties, the team anticipates that they will have a huge positive impact on farmers’ livelihoods.

Photo: E Weltzein-Rattunde/ICRISAT

Malian sorghum farmers.

Mali and Queensland similar problem, different soil

In Mali and the wider Sahel region within West Africa, cropping conditions are ideal for sorghum. The climate is harsh, with daily temperatures on the dry, sun-scorched lower plains rarely falling below 30°C. With no major river system, the threat of drought is ever-present, and communities are entirely dependent on the 500 millimetres of rain that falls during the July and August wet season.

“All the planting and harvesting is done during the rainy season,” says Niaba. “We have lakes that are fed by the rain, but when these lakes start to dry up farmers rely mostly on the moisture remaining in the soil.”

Over 17 thousand kilometres to the east of Mali, in north-eastern Australia’s dryland cropping region, situated mainly in the state of Queensland, sorghum is the main summer crop, and is considered a good rotational crop as it performs well under heat and moisture stress. The environment here is similar to Mali’s, with extreme drought a big problem.

Average yields for sorghum in Queensland are double those in Mali—around two tonnes per hectare—yet growers still consider them low, directly limited by the crop’s predominantly water-stressed production environment in Australia.

One of the differentiating factors is soil. “Queensland has a much deeper and more fertile soil compared to Mali, where the soil is shallow, with no mulch or organic matter,” says Niaba. “Also, there is no management at the farm level in Mali, so when rain comes, if the soil cannot take it, we lose it.”

Photo: Bart Sedgwick/Flickr (Creative Commons)

Sorghum in Queensland, Australia.

Making sorghum stay green, longer

Another key reason for the difference in yields between Queensland and Mali is that growers in Queensland are sowing a sorghum variety of with a genetic trait that makes it more tolerant to drought.

This trait is called ‘stay-green’, and over the last two decades it has proven valuable in increasing sorghum yields, using less water, in north-eastern Australia and the southern United States.

Stay-green allows sorghum plants to stay alive and maintain green leaves for longer during post-flowering drought—that is, drought that occurs after the plant has flowered. This means the plants can keep growing and produce more grain in drier conditions.

“We’ve found that stay-green can improve yields by up to 30 percent in drought conditions with very little downside during a good year,” says Andrew Borrell from the Queensland Alliance for Agriculture and Food Innovation (QAAFI) at the University of Queensland (UQ) in Australia.

“Plant breeders have known about stay-green for some 30 years,” he says. “They’d walk their fields and see that the leaves of certain plants would remain green while others didn’t. They knew it was correlated with high yield under drought conditions, but didn’t know why.”

Stay-green’s potential in Mali

With their almost 20 years working on understanding how stay-green works, Andrew and his colleagues at UQ were invited by GCP in 2012 to take part in the IER/CIRAD collaborative project, to evaluate the potential for introducing stay-green into Mali’s local sorghum varieties and enriching Malian pre-breeding material for the trait.

A pivotal stage in this new alliance was a 12-month visit to Australia by Niaba and his IER colleague Sidi Coulibaly, to work with Andrew and his team to understand how stay-green drought resistance works in tall Malian sorghum varieties.

“African sorghum is very tall and sensitive to variation in day length,” explains Andrew. “We have been looking to investigate if the stay-green mechanism operates in tall African sorghums (around four metres tall) in the same way that it does in short Australian sorghum (one metre tall).”

Having just completed a series of experiments at the end of 2014, the UQ team consider their data as preliminary at this stage. “But it looks like we can get a correlation between stay-green and the size and yield of these Malian lines,” says Andrew. “We think it’s got great potential.”

Photo: S Sridharan/ICRISAT

Sorhum growing in Mozambique.

Sharing knowledge as well as germplasm

Eva Weltzein-Rattunde has played more of an on-the-ground capacity development role in Mali since accepting her position at ICRISAT in 1998. She says “the key challenges have been improving the infrastructure of the national research facilities [in Mali] to do the research as well as increasing the technical training for local agronomists and researchers.”

Photo: ICRISAT

A Malian farmer harvests Sorghum.

A large part of GCP’s focus is building just such capacity among developing country partners to carry out crop research and breeding independently in future, so they can continue developing new varieties with drought adaptation relevant to their own environmental conditions.

A key objective of the IER team’s Australian visit was to receive training in the methods for improving yields and drought resistance in sorghum breeding lines from both Australia and Mali.

“We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology, plus a lot more,” says Niaba. This training complemented previous training Niaba and IER researchers had from CIRAD and ICRISAT through the MARS and BCNAM projects.

“We [CIRAD] have a long collaboration in sorghum research in Mali and training young scientists has always been part of our mission,” says Jean-François. “We’ve hosted several IER students here in France and we are always interacting with our colleagues in Mali either over the phone or travelling to Mali to give technical workshops in molecular breeding.”

Photo: Rita Willaert/Flickr (Creative Commons)

Harvested sorghum in Sudan.

Working together to implement MARS in the sorghum breeding program in Mali represented many operational challenges, Jean-François explains. “The approach requires a very tight integration of different and complementary skills, including a strong conventional breeding capacity, accurate breeders’ knowledge, efficient genotyping technologies, and skills for efficient genetic analyses,” he says.

Because of this requirement, he adds, there are very few reported experiences of the successful implementation of MARS.  It is also the reason why these kinds of projects would normally not be undertaken in a developing country like Mali, but for the support of GCP and the dedicated mentorship of Jean-François.

sorghum quote 2“GCP provided the perfect environment to develop the MARS approach,” says Jean-François. “It brought together people with complementary skills, developed the Integrated Breeding Platform (IPB), and provided tools and services to support the programme.”

In addition to developing capacity, Jean-François says one of the great successes of both the MARS and the BCNAM projects was how they brought together Mali’s sorghum research groups working at IER and ICRISAT in a common effort to develop new genetic resources for sorghum breeding.

“This work has strengthened the IER and ICRISAT partnerships around a common resource. The large multiparent populations that have been developed are analysed collectively to decipher the genetic control of important traits for sorghum breeding in Mali,” says Jean-François. “This community development is another major achievement of the Sorghum Research Initiative.” The major challenge, he adds, will be whether this community can be kept together beyond GCP.

Considering the numerous ‘non-GCP’ activities that have already been initiated in Africa as a result of the partnerships forged through GCP research, Jean-François sees a clear indication that these connections will endure well beyond GCP’s time frame.

GCP’s sunset is Mali’s sunrise

Photo: S Sridharan/ICRISAT

Sorghum at sunset in Mozambique.

Among the new activities Jean-François lists are both regional and national projects aimed at building on what has already been achieved through GCP and linking national partners together. These include the West African Agricultural Productivity Program (WAAPP), the West Africa Platform being launched by CIRAD as a continuation of the MARS innovation, and another MARS project in Senegal and Niger through the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet at Kansas State University.

“These are all activities which will help maintain the networks we’ve built,” Jean-François says. “I think it is very important that these networks of people with common objectives stick together.”

sorghum quoteFor Niaba, GCP provided the initial boost needed for these networks to emerge and thrive. “We had some contacts before, but we didn’t have the funds to really get into a collaboration. This has been made possible by GCP. Now we’re motivated and are making connections with other people on how we can continue working with the material we have developed.”

“I can’t talk enough of the positive stories from GCP,” he adds. “GCP initiated something, and the benefits for me and my country I cannot measure. Right now, GCP has reached its sunset; but for me it is a sunrise, because what we have been left with is so important.”

More links

Photo: ICRISAT

A sorghum farmer in her field in Tanzania.

Jun 192015
 
Photo: N Palmer/CIAT

Bean Market in Kampala, Uganda.

Common beans are the world’s most important food legume, particularly for subsistence and smallholder farmers in East and Southern Africa. They are a crucial source of protein, are easy to grow, are very adaptable to different cropping systems, and mature quickly.

To some, beans are ‘a near-perfect food’ because of their high protein and fibre content plus their complex carbohydrates and other nutrients. One cup of beans provides at least half the recommended daily allowance of folate, or folic acid – a B vitamin that is especially important for pregnant women to prevent birth defects. One cup also supplies 25–30 percent of the daily requirement of iron, 25 percent of that of magnesium and copper, and 15 percent of the potassium and zinc requirement.

Unfortunately, yields in Africa are well below their potential – between 20 and 30 percent below. The main culprit is drought, which affects 70 percent of Africa’s major bean-producing regions. Drought is especially severe in the mid-altitudes of Ethiopia, Kenya, Malawi and Zimbabwe, as well as across Southern Africa.

“For the past seven or eight years, rains have been very unreliable in central and northern Malawi,” says Virginia Chisale, a bean breeder with Malawi’s Department of Agricultural Research and Technical Services.

“In the past, rains used to be very reliable and people were able to know the right time to plant to meet the rains in critical conditions,” she says. “Now these primary agriculture regions are either not receiving rain for long periods of time, or rains are not falling at the right time.”

Virginia recounts that during the 2011/12 cropping season there were no rains soon after planting, when it is important that beans receive moisture. Such instances can cut bean yields by half.

Photo: N Palmer/CIAT

Steve Beebe in the field.

“Drought is a recurrent problem of rainfed agriculture throughout the world,” says Steve Beebe, a leading bean breeder with the International Center for Tropical Agriculture (CIAT). “Since over 80 percent of the world’s cultivated lands are rainfed, drought stress has major implications for global economy and trade.”

Steve was the Product Delivery Coordinator for the beans component of the Legumes Research Initiative (RI), part of Phase II of the CGIAR Generation Challenge Programme (GCP). The RI incorporated several projects, the biggest of which was Tropical Legumes I (TLI) (see box). The main objective of the work on beans within TLI was to identify and develop drought-tolerant varieties using marker-assisted breeding techniques. The resulting new varieties were then evaluated for their performance in Ethiopia, Kenya, Malawi and Zimbabwe.

“It’s vital that we develop high-yielding drought-tolerant varieties so as to help farmers, particularly in developing countries, adapt to drought and produce sustained yields for their families and local economies,” says Steve.

The Tropical Legumes I project (TLI) was initiated by GCP in 2007 and subsequently incorporated into the Programme’s Legumes Research Initiative (RI). The goal of the RI was to improve the productivity of four legumes – beans, chickpeas, cowpeas and groundnuts – that are important in food security and poverty reduction in developing countries, by providing solutions to overcome drought, poor soils, pests and diseases. TLI was led by GCP and focussed on Africa. Work on beans within TLI was coordinated by the International Center for Tropical Agriculture (CIAT). The partners in the four target countries were Ethiopia’s South Agricultural Research Institute (SARI), the Kenya Agricultural Research Institute (now known as the Kenya Agricultural and Livestock Research Organization, KALRO), Malawi’s Department of Agricultural Research and Technical Services (DARTS) and Zimbabwe’s Crop Breeding Institute (CBI) of the Department of Research and Specialist Services (DR&SS). Cornell University in the USA was also a partner. Tropical Legumes II (TLII) was a sister project to TLI, led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) on behalf of the International Institute of Tropical Agriculture (IITA) and CIAT. It focussed on large-scale breeding, seed multiplication and distribution primarily in sub-Saharan Africa and South Asia, thus applying the ‘upstream’ research results from TLI and translating them into breeding materials for the ultimate benefit of resource-poor farmers. Many partners in TLI also worked on projects in TLII.

For an overview of the work on beans from the perspectives of four different partners, watch our video below, “The ABCs of bean breeding”.

What makes a plant drought tolerant?

The question of what makes a plant drought tolerant is one that breeders have debated for centuries. No single plant characteristic or trait can be fully responsible for protecting the plant from the stress of intense heat and reduced access to water.

“It’s a difficult question to answer for any plant, including beans,” says Steve. “Once you do isolate a trait genetically, it can often be difficult to identify this trait in a plant in the field, for example, identifying the architecture and length of a plant’s roots.”

Phenotyping is an important process in conventional plant breeding. It involves identifying and measuring the presence of physical traits such as seed colour, pod size, stem thickness or root length. Gathering data about a range of such characteristics across a number of different plant lines helps breeders decide which plants to use as parents in crosses and which of the progeny have inherited useful traits.

Root length has long been thought of as a drought-tolerance trait: the longer the root, the more chance it has of tapping into moisture stored deeper in the soil profile.

Given, however, that it is difficult to inspect root length in the field, researchers at CIAT have been exploring other more accessible drought-tolerance traits they can more easily identify and measure. One of these is measuring the weight of the plants’ seeds.

Photo: N Palmer/CIAT

Comparison between varieties in trials of drought tolerant beans at CIAT’s headquarters in Colombia.

Fat beans indicate plants coping with drought stress

“We measure seed weight because we are discovering that under drought stress, drought-tolerant bean varieties will divert sugars from their leaves, stems and pods to their seed,” says Steve. “We call this trait ‘pod filling’, and for us it is the most important drought-tolerance trait to be found over the last several years.”

Finding bean plants with larger, heavier seeds when growing under drought conditions indicates that the plants are coping well, and means farmers’ yields are maintained.

As part of GCP’s Legumes RI, African partners like Virginia have been measuring the seed weight of several advanced breeding lines, which can be used as parents to develop new varieties. These breeding lines have been bred by CIAT and demonstrate this pod-filling process and consequent tolerance of drought.

Although this measurement is relatively cheap and easy for breeders all over the world to do, Steve and his team are interested in finding an even more efficient way to spot plants that maintain full pods under drought.

“We are trying to understand which genes control this trait so we can use molecular-assisted breeding techniques to determine when the trait is present,” says Steve. Having identified several regions of genes related to pod filling, he and his team have developed molecular markers to help breeders identify which plants have these desired genes. “The use of molecular markers in selection significantly reduces the time and cost of the breeding process, making it more efficient. This means that we get improved varieties out to farmers more quickly.”

Photo: N Palmer/CIAT

Bean farmer in Rwanda.

Molecular markers (also known as DNA markers) are used by researchers as ‘flags’ to identify particular genes within a plant’s genome (DNA) that control desired traits, such as drought tolerance. These markers are themselves fragments of DNA that highlight particular genes or regions of genes by binding near them.

To use an analogy, think of a story as the plant’s genome: its words are the plant’s genes, and a molecular marker works like a text highlighter. Molecular markers are not precise enough to highlight specific words (genes), but they can highlight sentences (genomic regions) that contain these words (genes), making it easier and quicker to identify whether or not they are present.

Photo: J D'Amour/HarvestPlus

Beans from Rwanda.

Plant breeders can use molecular markers from early on in the breeding process to choose parents for their crosses and determine whether progeny they have produced have the desired trait, based on testing only a small amount of seed or seedling tissue.

“If the genes are present, we grow the progeny and conduct the appropriate phenotyping; if not, we throw the progeny away,” explains Steve. “This saves us resources and time because we need to grow and phenotype only the few hundred progeny which we know have the desired genes, instead of a few thousand progeny, most of which would not possess the gene.”

Outsourcing genotyping to the UK Steve says a significant contribution made by GCP was facilitating a deal with a private UK company (LGC Genomics, formerly KBioscience) that is able to quickly and cheaply genotype leaf samples sent to them by African breeders. The company then forwards the data to the International Center for Tropical Agriculture (CIAT), who analyse it and let the breeders in Africa know which progeny contain the desired genes and are suitable for breeding, and which ones to throw away.  “The whole process takes roughly four weeks, but saves the breeders the time and effort to grow all progeny,” says Steve. “This system works well for countries that don’t have the capacity or know-how to do the molecular work,” says Darshna Vyas, a plant genetics specialist with LGC Genomics. “Genotyping has advanced to a point where even larger labs around the world choose to outsource their genotyping work, as it is cheaper and quicker than if they were to equip their lab and do it themselves. We do hundreds of thousands of genotyping samples a day – day in, day out. It’s our business.”

GCP has supported this foundation work, building on the extensive bean research already done by CIAT dating back to the 1970s, to develop molecular markers not only for drought-tolerance traits such as pod filling, but also for traits associated with resistance to important insect and disease menaces.

“Under drought conditions, plants become more susceptible to pests and diseases, so it was important that we also try to identify and include resistance traits in the drought-tolerant progeny,” says Steve.

Drought is but one plant stressor – diseases and pests wreak havoc too

Photo: W Arinaitwe/CIAT/PABRA

Common bacterial blight on bean.

The bean diseases that farmers in Ethiopia, Kenya, Malawi and Zimbabwe continually confront are angular leaf spot, bean common mosaic virus, common bacterial blight and rust. Key insect pests are bean stem maggot and aphids.

“We’ve had reports of bean stem maggot and bean common mosaic virus wiping out a whole field of beans,” says Virginia. “Although angular leaf spot and common bacterial blight are not as damaging, they can still reduce yields by over 50 percent.”

Virginia says this is devastating for farmers in Malawi, many of whom only have enough land and money to grow beans to feed their families and sell what little excess there is at market to purchase other necessities.

“This is why we are excited by the prospect of developing not just drought-tolerant varieties, but drought-tolerant varieties with disease and pest resistance as well,” says Virginia.

Virginia’s team in Malawi – along with other breeders in Ethiopia, Kenya and Zimbabwe – are currently using over 200 Mesoamerican and Andean bean breeding lines supplied by CIAT to help breed for drought tolerance and disease and pest resistance. Although many do not yet have the capacity to do molecular breeding in their countries, thanks to advances in plant science it is becoming more feasible and cheaper to outsource molecular breeding stages of the process (see box above).

“With help from GCP and CIAT, we have successfully crossed a line from CIAT with some local varieties to produce plants that are high yielding and resistant to most common bean diseases,” Virginia says.

Photo: ILRI

Malawian farmer Jinny Lemson grows beans to feed her livestock.

Ethiopia’s new bean breeders

Photo: ILRI

Young women sorting beans after a harvest in Ethiopia.

One man who has been helping build this new breeding capacity is Bodo Raatz, a molecular geneticist who joined CIAT and GCP’s Legumes RI in late 2011.

“We’ve [CIAT] hosted several African PhD students here in Colombia and have conducted several workshops in Colombia and Africa too,” says Bodo.

“At the workshops we teach local breeders and technicians how to use genetic tools and markers for advanced breeding methods, phenotyping and data management. The more people there are who can do this work, the quicker new varieties will filter through to farmers.”

Bodo says he has found delivering the training both personally and professionally rewarding, especially “seeing the participants understand the concepts and start using the tools and techniques to develop new lines [of bean varieties] and contribute to the project.”

One national breeder whom Bodo has seen advance from the training is Daniel Ambachew, then a bean breeder at the Southern Agricultural Research Institute (SARI) in Ethiopia.

Daniel started as a GCP-funded Master’s student enrolled at Haramaya University, Ethiopia, evaluating bean varieties with both tolerance to drought and resistance to bean stem maggot. He eventually became the Ethiopian project leader for beans within GCP’s Legumes RI.

“Daniel is currently one of only a handful of bean breeders in Ethiopia who are using molecular-assisted breeding techniques to breed new varieties,” says Bodo. “It’s quite an achievement, especially now that he has taken on the lead role in Ethiopia.”

Photo: N Palmer/CIAT

Buying and selling at a bean market in Kampala, Uganda.

For Daniel, learning about and using the new molecular-breeding techniques has been an exciting new challenge. “The most interesting part of the technology is that it helps us understand what is going on in the plant at a molecular level and lets us know if the crosses we are making are successful and the genes we want are present,” says Daniel. “All this helps improve our efficiency and speeds up the time it takes us to breed and release new varieties for farmers.”

By the end of 2014, Daniel and his team had finished the third year of trials and had several drought-tolerant lines ready for national trials in 2015 and eventual release in 2016.

Between 2012 and 2014, Daniel, and two other breeders from SARI, attended GCP’s three-year Integrated Breeding Multiyear Course, learning how to design molecular-assisted breeding trials; collect, analyse and interpret genotypic and phenotypic data from the trials; and manage data using the GCP’s Integrated Breeding Platform (IBP), particularly its Breeding Management System (BMS).

“The IBP is a really fantastic tool,” says Daniel. “During the course we learnt about the importance of recording clear and consistent phenotypic data, and the IBP helps us to do this as well as store it in a database. It makes it easier to refer to and learn from the past. I’m now trying to pass on the knowledge I’ve learnt as well as create and implement a data-management policy for all plant breeders and technicians in our institute.”

Bodo agrees with Daniel about the importance of IBP and believes it will be a true legacy of GCP beyond the Programme’s end in 2014. “The Platform has been designed to be the main data-management platform for plant breeders. It allows breeders to talk the same language and will reduce the need for learning new systems.”

Daniel says the challenge for his institute now is to build further capacity among staff – and to retain it. “At the moment we only have two bean breeders,” says Daniel. “It’s hard to retain research staff in Ethiopia as salaries are very low, so people move on to new, higher paying positions when they get the chance. It’s not unique to Ethiopia, but true of all Africa.”

Photo: O Thiong'o/CIAT/PABRA

Bean trials at KALRO in Kenya.

Kenya chasing higher bean yields

Across the border, Kenya has also been facing staffing issues.

“We are behind Ethiopia, Malawi and Zimbabwe in terms of our capacity and our trials,” says David Karanja, a bean breeder and project leader at the Kenya Agricultural and Livestock Research Organisation (KALRO, formerly the Kenya Agricultural Research Institute, or KARI). “At the start of the project, we didn’t have a breeder to lead the project for almost two years. However, we are now rapidly catching up with the others.”

And it’s a good thing too, as the country is in need of higher yielding beans to accommodate its population’s insatiable appetite for the crop. Out of the four target African countries, Kenya is the largest bean producer and consumer. As such, the country relies on beans imports from Ethiopia, Malawi, Tanzania and Uganda.

“A lot of families eat beans every day,” says David. “On average, the population eats 14–16 kilograms per person each year, but in western Kenya the average is over 60 kilograms.”

Photo: CIMMYT

Githeri, a Kenyan staple food made with maize and beans.

Kenyans consume an average total of 400,000 tonnes of beans each year, consistently more than the country produces. Projected trends in population growth indicate that this demand for beans will continue to increase by three to four percent annually.

Even though the area planted to beans has been increasing, David says farmers and breeders need to work together to improve productivity, which is well below where it should be. “The national average yield is 100 kilograms per hectare, which can range from 50 kilograms up to 700 kilograms, depending on whether we experience a drought, or a pest or disease epidemic,” explains David. “The minimum target we should be aiming for is 1,200 kilograms per hectare.”

Such a figure may seem impossible, but David believes that new breeding techniques and the varieties KALRO are producing with the help of CIAT are providing hope that farmers can reach these lofty goals.

“We have several bean lines that are showing good potential to produce higher yields under drought conditions and also have resistance to diseases like rust and mosaic virus,” says David. “They are currently under national trials, and we are confident these will be released to farmers in 2015.”

Photo: O Thiong'o/CIAT/PABRA

Varieties fare differently in KALRO bean trials in Kenya.

Commercialising beans

Photo: CIAT

Maturing bean pods.

“Many subsistence farmers have limited access to good quality bean seeds; they lack knowledge of good crop, pest and disease management; and they have poor post-harvest storage facilities,” says Godwill Makunde, who was previously a breeder at Zimbabwe’s Crop Breeding Institute (CBI) and leader of GCP’s Legumes RI bean project in Zimbabwe.

TLI’s sister project, Tropical Legumes II (TLII, see box above), led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), provided the route by which the upstream work of TLI would have impact in helping these farmers, seeking to deliver the new varieties developed under TLI into their hands. As part of TLII, Godwill, his successor Bruce Mutari, and other African partners worked on developing sustainable seed systems.

“Because beans are self-pollinating, which means each crop is capable of producing seed exactly as it was sown, farmers tend to propagate seed on farm,” says Godwill. “While this can be cost effective, it can reduce farmers’ access to higher yielding, tolerant lines, like the ones we are currently producing.”

In none of the partner countries of TLI and TLII are there formal systems for producing and disseminating bean seeds. Godwill and other partners are working with seed companies on developing a sustainable model where both farmers and seed companies can benefit.

Success built on a solid foundation

Photo: N Palmer/CIAT

Field workers tend beans in Rwanda.

A key to the success of the beans component of GCP’s Legumes RI, according to Ndeye Ndack Diop, GCP’s Capacity Building Theme Leader and TLI Project Manager, has been partners’ existing relationships with each other.

“Many of the partners are part of a very strong network of bean breeders: the Bean Coordinated Agricultural Project [BeanCAP],” explains Ndeye Ndack, adding that the TLI and BeanCAP networks benefited each other.

BeanCAP released more than 1,500 molecular markers to TLI researchers, which have helped broaden the genetic tools available to developing-country bean breeders.

TLI was also able to leverage and advance previous BeanCAP work and networks. For example, it was through this collaboration that GCP was introduced to LGC Genomics, a company it then worked with on many other crop projects.

To sustain integrated breeding practices beyond the Programme’s close in 2014, GCP established Communities of Practice (CoPs) that are discipline- and commodity-oriented.

“GCP’s CoP for beans has also helped to broaden both the TLI and BeanCAP networks too,” says Ndeye Ndack. “The ultimate goal of the CoPs is to provide a platform for community problem solving, idea generation and information sharing.”

Developing physical capacity

Besides developing human capacity, GCP has also invested in developing infrastructure in Ethiopia, Kenya and Zimbabwe.

SARI now has an irrigation system to enable them to conduct drought trials year round. “We have 12.5 hectares of irrigation now, which we use to increase our efficiency and secure our research,” says Daniel. “We can also increase seed with this irrigation during the off-season and develop early generation seeds for seed producers.”

In Zimbabwe, CBI received specialised equipment that enables them to extract DNA and send it for genotyping in the UK.

Both SARI and CBI also received automatic weather stations from GCP for high-precision climatic data capture, with automated data loading and sharing with other partners in the network.

Delivering the right beans to farmers

Back in Malawi, Virginia says another important facet of the TLII project is that researchers understand what qualities farmers want in their beans. “It’s no use developing higher yielding beans if the farmer doesn’t like the colour, or they don’t taste nice,” she says. “For example, consumers in central Malawi prefer khaki or ‘sugar beans’, which are tan with brown, black or red speckles. While those in southern Malawi tend to prefer red beans. Farmers know this and will grow beans that they know consumers will want.”

Photo: N Palmer/CIAT

Diversity at bean market in Masaka, Uganda.

Breeders in all four countries have been conducting workshops and small trials with farmers to find out this information. In Kenya, David finds farmer participation a great way to promote the work they are doing and show the impact the new drought-tolerant and disease-resistant lines can have.

“Farmers are excited and want to grow these varieties immediately when they see for themselves the difference in yield these new varieties can produce compared to their regular varieties,” says David. “They understand the pressure on them to produce more yields and are grateful that these varieties are becoming more readily available as well as tailored to their needs.”

For Steve, such anecdotes provide him and his collaborators with incentives to continue their quest to discover more molecular markers associated with drought tolerance, post-GCP.

“It’s a testament to everyone involved that we have been able to develop these advanced lines with pod-filling traits using molecular techniques, and make them available to farmers in six years instead of ten,” says Steve.

More links

Jun 122015
 
Photo: IITA

Growing cowpea pods.

Each year, millions of people in Senegal go hungry for several months, many surviving on no more than one meal a day. Locals call this time soudure – the hungry period. It typically lasts from June through to September, when previous winter and spring cereal supplies are exhausted and people wait anxiously for a bountiful autumn cereal harvest.

During this period, a bowl of fresh green cowpea pods once a day is the best that many people can hope for. Cowpeas are the first summer crop to mature, with some varieties ready to harvest in as little as 60 days.

While cowpeas provide valued food security in Africa, yields remain low. In Senegal, average cowpea yields are 450 kilograms per hectare, a mere 10–30 percent of their potential. This poor productivity is primarily because of losses due to insects and diseases, but is sometimes further compounded by chronic drought.

In 2007, the CGIAR Generation Challenge Programme (GCP) brought together a team of plant breeders and geneticists from Burkina Faso, Mozambique, Nigeria, Senegal and the USA to collaborate on cowpea. Their goal was to breed varieties that would be higher yielding, drought tolerant and resistant to pests and diseases, and so help secure and improve local cowpea production in sub-Saharan African countries.

Photo: IITA

A trader selling cowpea at Bodija market, Ibadan, Nigeria.

Cowpea production – almost all of it comes from Africa

A type of legume originating in West Africa, cowpeas are also known as niébé in francophone Africa and as black-eyed peas in the USA.  They are well adapted to drier, warmer regions and grow well in poor soils. In Africa, they are mostly grown in the hot, drought-prone savannas and very arid sub-Saharan regions, often together with pearl millet and sorghum.

Nutritionally, cowpeas are a major source of dietary protein in many developing countries. Young leaves, unripe pods and peas are used as vegetables, and the mature grain is processed for various snacks and main meal dishes. As a cash crop, both for grain and animal fodder, cowpea is highly valued in sub-Saharan Africa.

Worldwide, an estimated 14.5 million hectares of land is planted with cowpea each year. Global production of dried cowpeas in 2010 was 5.5 million tonnes, 94 percent of which was grown in Africa.

“In Senegal, cowpeas cover more than 200,000 hectares,” says Ndiaga Cissé, cowpea breeder at L’institut sénégalais de recherches agricoles (ISRA; Senegalese Agricultural Research Institute). “This makes it the second most grown legume in Senegal, after groundnuts.”

In 2011, Senegal experienced its third drought within a decade. Low and erratic rainfall led to poor harvests in 2011 and 2012: yields of cereal crops (wheat, barley and maize) fell by 36 percent compared to 2010. Consequently, the hungry period in 2012 started three months earlier than usual, making gap-fillers like cowpea even more important. In fact, cereal production in sub-Saharan African countries has not seen substantial growth over the last two decades – total area, yield and production grew by only 4.3 percent, 1.5 percent and 5.8 percent, respectively.

Climate change is expected to further compound this situation across sub-Saharan Africa. Droughts are forecast to occur more frequently, weakening plants and making them more vulnerable to pests and diseases.

“Improved varieties of cowpeas are urgently needed to narrow the gap between actual and potential yields,” says Ndiaga. “They will not only provide security to farmers in the face of climate change, but will also help with food security and overall livelihoods.”

Photo: IITA

Farmers in Northern Nigeria transport their cowpea harvest.

Mapping the cowpea genome

For over 30 years, Phil Roberts, a professor in the Department of Nematology at the University of California, Riverside (UCR), has been breeding new varieties of cowpea. “UCR has a long history of research in cowpea breeding that goes back to the mid-seventies,” explains Phil. “One of the reasons we were commissioned by GCP in 2007 was to use our experience, particularly in using molecular breeding, to help African cowpea-breeding programmes produce higher yielding cowpeas.”

For seven years, Phil and his team at UCR coordinated the cowpea component of the Tropical Legumes I (TLI) project led by GCP (see box below).  The objective of this work was to advance cowpea breeding by applying modern, molecular breeding techniques, tools and knowledge to develop lines and varieties with drought tolerance and resistance to pests and diseases in the sub-Saharan African countries Burkina Faso, Mozambique, Nigeria and Senegal.

The molecular breeding technology that UCR uses for cowpeas is based on finding genes that help cowpea plants tolerate insects and diseases, identifying markers that can indicate the presence of known genes, and using these to incorporate valuable genes into higher yielding varieties.

“Using molecular breeding techniques is a lot easier and quicker, and certainly less hit-or-miss, than conventional breeding techniques,” says Phil. “We can shorten the time needed to breed better adapted cowpea varieties preferred by farmers and markets.”

Phil explains that the first priority of the project was to map the cowpea genome.

“The map helps us locate the genes that play a role in expressing key traits such as drought tolerance, disease resistance or pest resistance,” says Phil. “Once we know where these genes are, we can use molecular marker tools to identify and help select for the traits. This is a lot quicker than growing the plant and observing if the trait is present or not.”

To use an analogy, think of the plant’s genome as a story: its words are the plant’s genes, and a molecular marker works as a text highlighter. Molecular markers are not precise enough to highlight specific words (genes), but they can highlight sentences (genomic regions) that contain these words (genes), making it easier and quicker to identify which plants have them. Traditionally, breeders have needed to grow plants to maturity under appropriately challenging conditions to see which ones are likely to have useful traits, but by using markers to flag valuable genes they are able to largely skip this step, and test large amounts of material to choose the best parents for their crosses, then check which of the progeny have inherited the gene or genes.

Photo: IITA

Diversity of cowpea seed.

Breeding new varieties faster, using modern techniques

Photo: ICRISAT

A farmer pleased with her cowpea plants.

The main focus of the cowpea component in TLI was to optimise marker-assisted recurrent selection (MARS) and marker-assisted backcrossing (MABC) breeding techniques for sub-Saharan African environments and relevant traits.

MARS identifies regions of the genome that control important traits. In the case of cowpeas, these include drought tolerance and insect resistance. It uses molecular markers to explore more combinations in the plant populations, thus increasing breeding efficiency.

MABC is the simplest form of marker-assisted breeding, in which the goal is to incorporate a major gene from an agronomically inferior source (the donor parent) into an elite cultivar or breeding line (the recurrent parent). Major genes by themselves have a significant effect; it’s therefore easier to find a major gene associated with a desired trait, than having to find and clone several minor genes. The aim is to produce a line made up almost entirely of the recurrent parent genotype, with only the selected major gene from the donor parent.

Using the genome map and molecular markers, the UCR team identified 30 cowpea lines with drought tolerance and pest resistance from 5,000 varieties in its collection, providing the raw material for marker-assisted breeding. “Once we knew which lines had the drought-tolerance and pest-resistance genes we were looking for, we crossed them with high-yielding lines to develop 20 advanced cowpea lines, which our African partners field tested,” says Phil.

The lines underwent final field tests in 2014, and the best-yielding drought-tolerant lines will be used locally in Burkina Faso, Mozambique and Senegal to develop new higher yielding varieties that will be available to growers by 2016.

“While we are still some time off from releasing these varieties, we already feel we are two or three years ahead of where we would be if we were doing things using only conventional breeding methods,” says Ndiaga.

Photo: IITA

A parasitic Striga plant, in a cowpea experimental plot.

The genome map and molecular markers have helped cowpea breeders like Ousmane Boukar, cowpea breeder and Kano Station Representative with the International Institute of Tropical Agriculture (IITA), headquartered in Nigeria, to locate the genes in cowpeas that play a role in expressing desirable traits.

Ousmane, who was GCP’s cowpea Product Delivery Coordinator, says, “We have used this technology to develop advanced breeding lines that are producing higher yields in drier conditions and displaying resistance to several pests and diseases like thrips and Striga. We expect these lines to be available to plant breeders by the end of 2015.

“TLI has had a huge impact in Africa in terms of developing capacity to carry out marker-assisted breeding,” he says. “This form of breeding helps us to breed new varieties in three to five years instead of seven to ten years.”

The Tropical Legumes I project (TLI) was initiated by GCP in 2007 and subsequently incorporated into the Programme’s Legumes Research Initiative (RI). The goal of the RI was to improve the productivity of four legumes – beans, chickpeas, cowpeas and groundnuts – that are important in food security and poverty reduction in developing countries, by providing solutions to overcome drought, poor soils, pests and diseases. TLI was led by GCP and focussed on Africa. Work on cowpea within TLI was coordinated by the University of California, Riverside in the USA. Target-country partners were Institut de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso, Universidade Eduardo Mondlane in Mozambique and Institut Sénégalais de Recherches Agricoles (ISRA; Senegalese Agricultural Research Institute) in Senegal. Other partners were the International Institute of Tropical Agriculture (IITA) and USA’s Feed the Future Innovation Labs for Collaborative Research on Grain Legumes and for Climate-Resilient Cowpea. Tropical Legumes II (TLII) was a sister project to TLI, led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) on behalf of IITA and the International Centre for Tropical Agriculture (CIAT). It focussed on large-scale breeding, seed multiplication and distribution primarily in sub-Saharan Africa and South Asia, thus applying the ‘upstream’ research results from TLI and translating them into breeding materials for the ultimate benefit of resource-poor farmers. Many partners in TLI also worked on projects in TLII.

Burkina Faso – evaluating new lines to improve the country’s economy

Cowpea is an important crop for the people of Burkina Faso. Over 10 million farmers produce on average 800,000 tonnes of cowpeas each year, making the country the third largest producer in the world, behind neighbours Nigeria and Niger.

Much of Burkina Faso’s cowpea crop is consumed domestically, but the government sees potential in increasing productivity for export to Côte d’Ivoire and Ghana in the south. This new venture would improve the country’s gross domestic product (GDP), which is the third lowest in the world.

“The government is very interested in our research to improve cowpea yields and secure them against drought and disease,” says Issa Drabo, lead cowpea breeder with the Institut de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso.

“We’ve been working closely with UCR to evaluate advanced breeding lines that we can use in our own breeding programme. So far we have several promising lines, some of which breeders are using to create varieties for release to farmers – some as early as this year.”

Photo: IITA

Farmers in Burkina Faso discuss cowpea varieties during participatory varietal selection activities.

Outsourcing the molecular work

Issa says his team has mainly been using conventional breeding techniques and outsourcing the molecular breeding work to the UK and USA. “We send leaf samples to the UK to be genotyped by a private company [LGC Genomics], who then forward the data to UCR, who analyse it and tell us which plants contain the desired genes and would be suitable for crossing.”

The whole process takes four to six weeks, from taking the samples to making a decision on which plants to cross.

“This system works well for countries that don’t have the capacity or know-how to do the molecular work,” says Darshna Vyas, a plant genetics specialist with LGC Genomics. “Genotyping has advanced to a point where even larger labs around the world choose to outsource their genotyping work, as it is cheaper and quicker than if they were to equip their lab and do it themselves. We do hundreds of thousands of genotyping samples a day – day in, day out. It’s our business.”

Darshna says LGC Genomics have also developed plant kits, as a result of working more with GCP partners from developing countries. “We would receive plant tissue that was not properly packaged and had become mouldy on the journey. The plant kits help researchers package their tissue correctly. The genotyping data you get from undamaged tissue compared to damaged tissue is a thousand times better.”

Getting the genotyping expertise on the ground

Photo: IITA

A trader bagging cowpeas at Bodija market, Ibadan, Nigeria.

To reduce their African partners’ reliance on UCR, researchers from the university, including Phil, have been training young plant breeders and PhD students from collaborating institutes. Independent of the cowpea project, they have also been joining GCP’s Integrated Breeding Platform (IBP) training events in Africa to help breeders understand the new technologies.

“All this capacity building we do really gets at the issue of leaving expertise on the ground when the project ends,” says Phil. “If these breeders don’t have the expertise to use the modern breeding technologies, then we won’t make much progress.”

GCP Capacity Building Theme Leader and TLI Project Manager Ndeye Ndack Diop has been impressed by UCR’s enthusiasm to build capacity in its partner countries. “Capacity building is a core objective for GCP and the TLI project,” says Ndeye Ndack. “While it is built into almost all GCP projects, UCR have gone over and above what was expected of them and contributed towards building capacity not only among its partner institutions, but in many other African national breeding institutes as well.”

Issa Drabo reports that in 2014 two of his young researchers from Burkina Faso completed their training in GCP’s Integrated Breeding Multiyear Course, conducted by UCR and the IBP team.

One of Issa’s researchers at INERA, Jean-Baptiste de la Salle Tignegré, says the course helped him understand more about the background genetics, statistical analysis and data management involved in the process of molecular breeding. “Because of the course, we are now able to analyse the genotype data from LGC,” he says.

Mozambique – insects and drought are the problem

In 2010, the Universidade Eduardo Mondlane (UEM) joined the cowpea component of TLI, three years after the project started. “We were a little late to the party because we were busy setting up Mozambique’s first cowpea breeding programme, which only began in 2008,” recalls Rogerio Chiulele, a lecturer at the university’s Faculty of Agronomy and Forestry Engineering and lead scientist for cowpea research in Mozambique for TLI.

That year (2008), UEM received a GCP Capacity building à la carte grant to establish a cowpea-breeding programme for addressing some of the constraints limiting cowpea production and productivity, particularly drought, pests and diseases.

As in Burkina Faso and Senegal, in Mozambique cowpeas are an important source of food, for both protein and profit, particularly for the poor. Cowpeas rank as the fourth most cultivated crop in Mozambique, accounting for about nine percent of the total cultivated area, or an estimated four million hectares of smallholder farms.

Photo: IITA

Cowpea plants infested by aphids.

Rogerio says that farmers in his country, just as in other parts of Africa, struggle to reach their full yield potential because of climate, pests and diseases. “Several insect pests – such as aphids, flower thrips, nematodes and pod-sucking pests – can substantially reduce cowpea yield and productivity in Mozambique,” he says.

“Cowpea aphids can cause problems at any time in the growing season, but are most damaging during dry weather when they infest seedlings that are stressed from lack of water. In wetter parts of the country, flower thrips – which feed on floral buds – are the most damaging insect pest.” These insects are also major pests in Burkina Faso and Senegal, along with hairy caterpillar (Amsacta moloneyi), which can completely destroy swaths of cowpea seedlings.

Rogerio says breeding for insect resistance and drought tolerance, using marker-assisted techniques, improves breeders’ chances of increased cowpea productivity. “Productivity is key to increasing rural incomes, and new resources can then be invested in other activities that help boost total family income,” says Rogerio. “These new breeding techniques will help us achieve this quicker.”

Three high-yielding varieties to hit the Mozambique market in 2015

Photo: IITA

Mature cowpea pods ready for harvesting.

Since 2010, Rogerio’s team have quickly caught up to Burkina Faso and Senegal and plan to release three higher yielding new lines with drought tolerance in 2015. One of these lines, CB46, is based on a local cowpea variety crossed with a UCR-sourced American black-eyed pea variety that displays drought tolerance, which potentially has huge market appeal.

“Local varieties fetch, on average, half a US dollar per kilogram, compared to black-eyed pea varieties, whose price is in the region of four to five US dollars,” says Rogerio. “Obviously this is beneficial to the growers, but the benefits for consumers are just as appealing. The peas are better quality and tastier, and they take half as long to cook compared to local varieties.”

All these extra qualities are important to consider in any breeding programme and are a key objective of the Tropical Legume II (TLII) project (see box above). TLII activities, led by ICRISAT, seek to apply products from TLI to make an impact among farmers.

“TLII focuses on translating research outputs from TLI into tangible products, including new varieties,” says Ousmane Boukar, who works closely with Ndiaga, Issa and Rogerio in TLI and TLII.

Building a community of breeders to sustain success

Photo: C Peacock/IITA

Cowpea flower with developing pods.

Part of Ousmane’s GCP role as Product Delivery Coordinator for cowpeas was to lead a network of African cowpea and soybean breeders, and he champions the need for breeders to share information and materials as well as collaborating in other ways so as to sustain their breeding programmes post-GCP.

“To sustain integrated breeding practices post-2014, GCP has established Communities of Practice (CoP) that are discipline- and commodity-oriented,” says Ndeye Ndack. “The ultimate goal is to provide a platform for community problem solving, idea generation and information sharing.”

Ousmane says the core of this community was already alive and well before the CoP. “Ndiaga, Issa and I have over 80 years combined experience working on cowpea. We have continually crossed paths and have even been working together on other non-GCP projects over the past seven years.”

One such project the trio worked together on was to release a new drought-tolerant cowpea breeding line, IT97K-499-35, in Nigeria. “The performance of this variety impressed farmers in Mali, who named it jiffigui, which means ‘hope’,” says Ousmane. “We shared these new lines with our partners in Mali and Niger so they could conduct adaptation trials in their own countries.”

For young breeders like Rogerio, the CoP has provided an opportunity to meet and learn from these older partners. “I’ve really enjoyed our annual project meetings and feeling more a part of the world of cowpea breeding, particularly since we in Mozambique are isolated geographically from larger cowpea-producing countries in West Africa.”

For Phil Roberts, instances where more-established researchers mentor younger researchers in different countries give him hope that all the work UCR has done to install new breeding techniques will pay off. “Young researchers represent the future. If they can establish a foothold in breeding programmes in their national programmes, they can make an impact. Beyond having the know-how, it is vital to have the support of the national programme to develop modern breeding effort in cowpea – or any crop.”

Setting up breeders for the next 20 years

Photo: IITA

Farmer harvesting mature cowpea pods.

In Senegal, Ndiaga is hopeful that the work that the GCP project has accomplished has set up cowpea breeders in his country and others for the next 20 years.

“Both GCP’s and UCR’s commitment to build capacity in developing countries like Senegal cannot be valued less than the new higher yielding, drought-tolerant varieties that we are breeding,” says Ndiaga. “They have provided us with the tools and skills now to continue this research well into the future.

“We are close to releasing several new drought-tolerant and pest- and disease-resistant lines, which is our ultimate goal towards securing Senegal’s food and helping minimise the impact of the hungry period.”

More links