Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Oct 272015
 

 

Photo: N Palmer/CIAT

GCP sowed the seeds of a genetic resources revolution.

“In the last 10 years we have had a revolution in terms of developing the genetic resources of crops.”

So says Pooran Gaur, Principal Scientist for chickpea genetics and breeding at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), and Product Delivery Coordinator for chickpeas for the CGIAR Generation Challenge Programme (GCP).

He attributes this revolution in large part to GCP, saying it “played the role of catalyst. It got things started. It set the foundation. Now we are in a position to do further molecular breeding in chickpeas.”

Led by Pooran, researchers from India, Ethiopia and Kenya worked together not only to develop improved, drought-tolerant chickpeas that would thrive in semiarid conditions, but also to ensure these varieties would be growing in farmers’ fields across Africa within a decade.

The 10-year Generation Challenge Programme, with the goal of improving food security in developing countries, aimed to leave plant genetic assets as an important part of its legacy.

Diagnostic, or informative, molecular markers – which act like ‘tags’ for beneficial genes scientists are looking for – are an increasingly important genetic tool for breeders in developing resilient, improved varieties, and have been a key aspect of GCP’s research.

Photo: ICARDA

Chickpeas, ready to harvest.

What is a diagnostic molecular marker?

Developments in plant genetics over the past 10–15 years have provided breeders with powerful tools to detect beneficial traits of plants much more quickly than ever before.

Scientists can identify individual genes and explore which ones are responsible for, or contribute to, valuable characteristics such as tolerance to drought or poor soils, or resistance to pests or diseases.

Once a favourable gene for a target agronomic trait is discovered and located in the plant’s genome, the next step is to find a molecular marker that will effectively tag it. A molecular marker is simply a variation in the plant’s DNA sequence that can be detected by scientists using any of a range of methods. When one of these genetic variants is found close on the genome to a gene of interest (or even within the gene itself), it can be used to indicate the gene’s presence.

To use an analogy, think of a story as the plant’s genome: its words are the plant’s genes, and a molecular marker works like a text highlighter. Molecular markers are not precise enough to highlight specific words (genes), but they can highlight sentences (genomic regions) that contain these words, making it easier and quicker to identify whether or not they are present.

Once a marker is found to be associated with a gene, or multiple genes, and determined to be significant to a target trait, it is designated an informative marker, diagnostic marker or predictive marker. Some simple traits such as flower colour are controlled by one gene, but more complex traits such as drought tolerance are controlled by multiple genes. Diagnostic markers enable plant breeders to practise molecular breeding.

Breeders use markers to predict plant traits

Photo: N Palmer/CIAT

Hard work: a Ugandan bean farmer’s jembe, or hoe.

In the process known as marker-assisted selection, plant breeders use diagnostic molecular markers early in the breeding process to determine whether plants they are developing will have the desired qualities. By testing only a small amount of seed or seedling tissue, breeders are able to choose the best parent plants for crossing, and easily see which of the progeny have inherited useful genes. This considerably shortens the time it takes to develop new crop varieties.

“We use diagnostic markers to check for favourable genes in plants under selection. If the genes are present, we grow the seed or plant and observe how the genes are expressed as plant characteristics in the field [phenotyping]; if the genes are not present, we throw the seed or plant away,” explains Steve Beebe, a leading bean breeder with the International Center for Tropical Agriculture (CIAT) and GCP’s Product Delivery Coordinator for beans.

“This saves us resources and time, as instead of a growing few thousand plants to maturity, most of which would not possess the gene, by using markers to make our selection we need to grow and phenotype only a few hundred plants which we know have the desired genes.”

GCP supported 25 projects to discover and develop markers for genes that control traits that enable key crops, including bean and chickpea, to tolerate drought and poor soils and resist pests and diseases.

Genomic resources, including genetic maps and genotyping datasets, were developed during GCP’s first phase (2004–2008) and were then used in molecular-breeding projects during the second five years of the Programme (2009–2014).

“GCP’s philosophy was that we have, in breeding programmes, genomic resources that can be utilised. Now we are well placed, and we should be able to continue even after GCP with our molecular-breeding programme,” says Pooran.

Photo: IRRI

A small selection of the rice diversity in the International Rice Research Institute gene bank – raw material for the creation of genomic resources.

Markers developed for drought tolerance

Photo: N Palmer/CIAT

Cracked earth.

With climate change making droughts more frequent and severe, breeding for drought tolerance was a key priority for GCP from its inception.

Different plants may use similar strategies to tolerate drought, for example, having longer roots or reducing water loss from leaves. But drought tolerance is a complex trait to breed, as in each crop a large number of genes are involved.

Wheat, for example, has many traits – each controlled by different genes – that allow the crop to tolerate extreme temperature and/or lack of moisture. Identifying drought tolerance in wheat is therefore a search for many genes. In the particular case of wheat, this search is compounded by its genetic make-up, which is one of the most complex in the plant kingdom.

The difficulty of identifying genes that play a significant role in drought tolerance makes it all the more impressive when researchers successfully collaborate to overcome these challenges. GCP-supported scientists were able to develop and use diagnostic markers in chickpea, rice, sorghum and wheat to breed for drought tolerance. The first new drought-tolerant varieties bred using marker-assisted selection have already been released to farmers in Africa and Asia and are making significant contributions to food and income security.

Photo: ICRISAT

Tanzanian sorghum farmer.

Markers developed for pests and diseases

Photo: IITA

A bumper harvest of cassava roots at the International Institute of Tropical Agriculture (IITA) in Nigeria.

Cassava mosaic disease (CMD) is the biggest threat to cassava production in Africa – where more cassava is grown and eaten than any other crop. A principal source of CMD resistance is CMD2, a dominant gene that confers high levels of resistance.

Nigerian GCP-supported researchers worked on identifying and validating diagnostic markers that are associated with CMD2. These markers are being used in marker-assisted selection work to transfer CMD resistance to locally-adapted, farmer-preferred varieties.

In the common bean, GCP-supported researchers identified genes for resistance to pests such as bean stem maggot in Ethiopia, as well as diseases such as the common mosaic necrosis potyvirus and common bacterial blight, which reduce bean quality and yields and in some cases means total crop losses.

Markers developed for acidic and saline soils

Photo: N Palmer/CIAT

Sifting rice in Nepal.

Aluminium toxicity and phosphorus deficiency, caused by imbalanced nutrient availability in acid soils, are major factors in inhibiting crop productivity throughout the world. Aluminium toxicity also exacerbates the effects of drought by inhibiting root growth.

Diagnostic markers for genes that confer tolerance to high levels of aluminium and improve phosphorus uptake were identified in sorghum, maize and rice. The markers linked to these two sets of similar major genes have been used efficiently in breeding programmes in Africa and Asia.

Salt stress is also a major constraint across many rice-producing areas, partly because modern rice varieties are highly sensitive to salinity. Farmers in salt-affected areas have therefore continued growing their traditional crop varieties, which are more resilient but give low yields with poor grain quality. To address this issue, GCP supported work to develop and use markers to develop popular Bangladeshi varieties with higher tolerance to salt. GCP also funded several PhD students working in this area, one of whom was Armin Bhuiya.

Markers mean information, which means power

Diagnostic molecular markers are, in their most essential form, data. That means they are easily stored and maintained as data in publicly accessible databases and publications. Breeders can now access the molecular markers developed for various crops through the Integrated Breeding Platform – a web-based one-stop shop for integrated breeding information (including genetic resources), tools and support, which was established by GCP and is now continuing independently following GCP’s close – in order to design and carry out breeding projects.

“We could not have done that much in developing genomic resources without GCP support,” says Pooran. “Now the breeding products are coming; the markers are strengthening our work; and you will see in the next five to six years more products coming from molecular breeding.

“For me, GCP has improved the efficiency of the breeding programme – that is the biggest advantage.”

More links

Photo: N Palmer/CIAT

Beans on sale in Uganda.

Oct 182015
 

C-Egesi_w“You can use any technology in the world, you can develop any product, but you need the products that farmers are willing to grow in their field.”

So says Chiedozie Egesi, a plant breeder and geneticist who has been one of the inspirational leaders and Principal Investigators for the CGIAR Generation Challenge Programme’s (GCP) Cassava Research Initiative in Africa.

It was his commitment to helping farmers that led Chiedozie to forsake his dream of becoming a surgeon, and instead to train as a plant breeder and help smallholder farmers in Nigeria. Having grown up in a small town in south-eastern Nigeria where poverty was a daily reality, he was particularly concerned about food security and nutrition for the people. He dreamt of developing cassava varieties that could beat the pests and diseases that often devastate such crops.

Photo: IITA

Peeling cassava roots.

“The food people grow should be nutritious, resistant and high-yielding enough to allow them to sell some of it and make money for other things in life, such as building a house, getting a motorbike or sending their kids to school,” Chiedozie says.

Nigeria is the most populous African country, with a population of more than 174 million. The main staple food is cassava, making Nigeria the world’s largest producer and consumer of the crop. But cassava is also important in other African countries. It is grown by nearly every farming family in sub-Saharan Africa. Africa produced nearly 140 million metric tonnes of cassava in 2012 – but most of the production is low-yielding subsistence farming for food by small-scale farmers for food for their own households alone.

After almost eight years working on GCP-supported cassava projects, Chiedozie is proud of what they have managed to accomplish: “That we’ve been able to give African farmers the varieties that they will love to grow is my biggest achievement”.

Meet Chiedozie and hear all about his research and the importance of cassava in the video series below (or watch on YouTube):

Transformation for Chiedozie – and for cassava

Chiedozie’s journey with GCP began after he had gained his PhD in yam breeding from the University of Ibadan, Nigeria. He undertook further studies and training at Cornell University and the University of Washington, both in the USA. He then returned home to Nigeria to lead the cassava breeding team at the National Root Crops Research Institute (NRCRI) and, following a promotion in 2010, was made Assistant Director of NRCRI’s Biotechnology Department. In 2004, a chance find on the Internet of a molecular breeding training programme in South Africa first led to Chiedozie’s involvement in GCP.

In 2010, work by Chiedozie and the NRCRI team, in collaboration with a transnational network of partners, resulted in the official release to Nigerian farmers of Africa’s first cassava variety developed using molecular-breeding techniques. Known as UMUCASS33 (or CR 41-10), it was resistant to cassava mosaic disease (CMD) – a devastating plant disease that can wipe out entire cassava crops – and also highly nutritious. In addition to a stream of further disease-resistant varieties, in 2012 they followed this accomplishment with the release of a high-starch variety bred using molecular techniques.

Photo: IITA

Nigerian women at work processing cassava.

In 2011, the cassava team together with the International Institute of Tropical Agriculture (IITA) and HarvestPlus (another CGIAR Challenge Programme focussed on the nutritional enrichment of crops), released three cassava varieties rich in pro-vitamin A, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A requirement – a figure Chiedozie and his team are now ambitiously striving to increase to 50 percent. In 2014, they released three more pro-vitamin A varieties with higher concentrations of beta-carotene.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold for the people of Africa.

Research that delivers benefits to poor farmers is what drives Chiedozie. In addition to the direct rewards of new varieties there are other highlights from his involvement with GCP, indicating a long term change in breeding science: “People are now using improved or modern techniques in breeding; people think about database management in cassava breeding across Africa; and African breeders are getting PhDs in molecular breeding.”

Photo: N Palmer/CIAT

Cassava leaves.

Building African capacity

Chiedozie believes a crucial element of GCP’s success in breeding better cassava varieties for smallholder African farmers lies in the capacity building and infrastructure support provided by GCP.

After his initial GCP training at the University of Pretoria, South Africa, Chiedozie engaged in other capacity-building opportunities, including a one-year visiting scientist fellowship at the International Center for Tropical Agriculture (CIAT) in Colombia. The significance of these early GCP opportunities was, Chiedozie says, momentous: “Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then.”

Chiedozie quoteChiedozie emphasises that such training opportunities are vital for the future food security of Africa. “We raised up a new crop of cassava breeders in Africa – people who were bold enough to take up a molecular breeding project and pursue it with support from the international centres. And today we are seeing the results of that. Cassava breeding programmes are standing today because of our quality of seeds sown in the past.”

The networking opportunities offered by the Cassava Community of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – have meant that Chiedozie and his colleagues could expand their collaboration at the local, national and regional levels: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons and also made our work more visible,” he says, citing effective links formed with Côte d’Ivoire, Ethiopia, Ghana, Liberia, Malawi, Mozambique, Sierra Leone and South Sudan.

Photo: M Mitchell/IFPRI


Selling fufu, a staple food made with cassava flour, at a market in Nigeria.

A paradigm shift

These opportunities have led to what Chiedozie calls a ‘paradigm shift’ in how national research agencies are viewed by donors and research investors: “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.

“Our work with GCP helped us to gain that capacity that we needed to be able to negotiate or even make a request for funding. And people are able to trust that you can deliver if you have delivered in the past for an organisation like GCP. So it gave us credibility; it gives us a platform to be able to speak to donors directly, and donors can now approach us, which never used to happen in pre GCP days.”

This newly found confidence and profile sees the NRCRI cassava team currently engaging with the Bill & Melinda Gates Foundation and the CGIAR Research Program on Roots, Tubers and Bananas (RTB) on research that will expand on and follow through on what GCP started.

Hear from Chiedozie on the beneficial outcomes of GCP – in terms not only of variety releases but also of attracting further projects, prestige, and enthusiastic young breeders – in the video below (or on YouTube):

For Chiedozie, his dream of helping his country’s struggling farmers and people is coming true. He has no regrets about dropping his dream of becoming a surgeon for one of helping his country as a plant breeder: “Coming from Umuahia, a small town in the southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school.

“Despite the social injustice around me, I always thought there was opportunity to improve people’s lives. This is what the GCP-supported research has helped me to do, even faster than I would have believed possible.”

More links

Oct 122015
 

 

Photo: One Acre Fund/Flickr (Creative Commons)

A Kenyan farmer harvesting her maize.

“The map of Kenya’s maize-growing regions mirrors the map of the nation’s acid soils.”

So says Dickson Ligeyo, senior research officer at the Kenya Agricultural and Livestock Research Organisation (KALRO; formerly the Kenya Agricultural Research Institute, or KARI), who believes this paints a sombre picture for his country’s maize farmers.

Maize is a staple crop for Kenyans, with 90 percent of the population depending on it for food. However, acid soils cause yield losses of 17–50 percent across the nation.

Soil acidity is a major environmental and economic concern in many more countries around the world. The availability of nutrients in soil is affected by pH, so acid conditions make it harder for plants to get a balanced diet. High acidity causes two major problems: perilously low levels of phosphorus and toxically high levels of aluminium. Aluminium toxicity affects 38 percent of farmland in Southeast Asia, 31 percent in Latin America and 20 percent in East Asia, sub-Saharan Africa and North America.

Aluminium toxicity in soil comes close to rivalling drought as a food-security threat in critical tropical food-producing regions. By damaging roots, acid soils deprive plants of the nutrients and water they need to grow – a particularly bitter effect when water is scarce.

Maize, meanwhile, is one of the most economically important food crops worldwide. It is grown in virtually every country in the world, and it is a staple food for more than 1.2 billion people in developing countries across sub-Saharan Africa and Latin America. In many cultures it is consumed primarily as porridge: polenta in Italy; angu in Brazil; and isitshwala, nshima, pap, posho,sadza or ugali in Africa.

Photo: Allison Mickel/Flickr (Creative Commons)

Ugali, a stiff maize porridge that is a staple dish across East Africa, being prepared in Tanzania.

Maize is also a staple food for animals reared for meat, eggs and dairy products. Around 60 percent of global maize production is used for animal feed.

The world demand for maize is increasing at the same time as global populations burgeon and climate changes. Therefore, improving the ability of maize to withstand acid soils and produce higher yields with less reliable rainfall is paramount. This is why the CGIAR Generation Challenge Programme (GCP) invested almost USD 12.5 million into maize research between 2004 and 2014.

GCP’s goal was to facilitate the use of genetic diversity and advanced plant science to improve food security in developing countries through the breeding of ‘super’ crops – including maize – able to tolerate drought and poor soils and resist diseases.

 By weight, more maize is produced each year than any other grain: global production is more than 850 million tonnes. Maize production is increasing at twice the annual rate of rice and three times that of wheat. In 2020, demand for maize in developing countries alone is expected to exceed 500 million tonnes and will surpass the demand for both rice and wheat.  This projected rapid increase in demand is mainly because maize is the grain of choice to feed animals being reared for meet – but it is placing strain on the supply of maize for poor human consumers. Demand for maize as feed for poultry and pigs is growing, particularly in East and Southeast Asia, as an ever-increasing number of people in Asia consume meat. In some areas of Asia, maize is already displacing sorghum and rice. Acreage allocated to maize production in South and Southeast Asia has been expanding by 2.2 percent annually since 2001. In its processed form, maize is also used for biofuel (ethanol), and the starch and sugars from maize end up in beer, ice cream, syrup, shoe polish, glue, fireworks, ink, batteries, mustard, cosmetics, aspirin and paint.

Researchers take on the double whammy of acid soils and drought

Part of successfully breeding higher-yielding drought-tolerant maize varieties involves improving plant genetics for acid soils. In these soils, aluminium toxicity inhibits root growth, reducing the amount of water and nutrients that the plant can absorb and compounding the effects of drought.

Improving plant root development for aluminium tolerance and phosphorous efficiency can therefore have the positive side effect of higher plant yield when water is limited.

Photo: A Wangalachi/CIMMYT

A farmer in Tanzania shows the effects of drought on her maize crop. The maize ears are undersized with few grains.

Although plant breeders have exploited the considerable variation in aluminium tolerance between different maize varieties for many years, aluminium toxicity has been a significant but poorly understood component of plant genetics. It is a particularly complex trait in maize that involves multiple genes and physiological mechanisms.

The solution is to take stock of what maize germplasm is available worldwide, characterise it, clone the sought-after genes and implement new breeding methods to increase diversity and genetic stocks.

Scientists join hands to unravel maize complexity

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) got their heads together between 2005 and 2008 to itemise what maize stocks were available.

Marilyn Warburton, then a molecular geneticist at CIMMYT, led this GCP-funded project. Her goal was to discover how all the genetic diversity in maize gene-bank collections around the globe might be used for practical plant improvement. She first gathered samples from gene banks all over the world, including those of CIMMYT and the International Institute of Tropical Agriculture (IITA). Scientists from developing country research centres in China, India, Indonesia, Kenya, Nigeria, Thailand and Vietnam also contributed by supplying DNA from their local varieties.

Photo: X Fonseca/CIMMYT

Maize diversity.

Researchers then used molecular markers and a bulk fingerprinting method – which Marilyn was instrumental in developing – for three purposes: to characterise the structure of maize populations, to better understand how maize migrated across the world, and to complete the global picture of maize biodiversity. Scientists were also using markers to search for new genes associated with desirable traits.

Allen Oppong, a maize pathologist and breeder from Ghana’s Crops Research Institute (CRI), of the Council for Scientific and Industrial Research, was supported by GCP from 2007 to 2010 to characterise Ghana’s maize germplasm. Trained in using the fingerprinting technique, Allen was able to identify distinctly different maize germplasm in the north of Ghana (with its dry savanna landscape) and in the south (with its high rainfall). He also identified mixed germplasm, which he says demonstrates that plant germplasm often finds its way to places where it is not suitable for optimal yield and productivity. Maize yields across the country are low.

Stocktaking a world’s worth of maize for GCP was a challenge, but not the only one, according to Marilyn. “In the first year it was hard to see how all the different partners would work together. Data analysis and storage was the hardest; everyone seemed to have their own idea about how the data could be stored, accessed and analysed best.

“The science was also evolving, even as we were working, so you could choose one way to sequence or genotype your data, and before you were even done with the project, a better way would be available,” she recalls.

Photo: N Palmer/CIAT

Maize ears drying in Ghana.

Comparing genes: sorghum gene paves way for maize aluminium tolerance

In parallel to Marilyn’s work, scientists at the Brazilian Corporation of Agricultural Research (EMBRAPA) had already been advancing research on plant genetics for acid soils and the effects of aluminium toxicity on sorghum – spurred on by the fact that almost 70 percent of Brazil’s arable land is made up of acid soils.

What was of particular interest to GCP in 2004 was that the Brazilians, together with researchers at Cornell University in the USA, had recently mapped and identified the major sorghum aluminium tolerance locus AltSB, and were working on isolating the major gene within it with a view to cloning it. Major genes were known to control aluminium tolerance in sorghum, wheat and barley and produce good yields in soils that had high levels of aluminium. The gene had also been found in rape and rye.

GCP embraced the opportunity to fund more of this work with a view to speeding up the development of maize – as well as sorghum and rice – germplasm that can withstand the double whammy of acid soils and drought.

Photo: L Kochian

Maize trials in the field at EMBRAPA. The maize plants on the left are aluminium-tolerant and so able to withstand acid soils, while those on the right are not.

Leon Kochian, Director of the Robert W Holley Center for Agriculture and Health, United States Department of Agriculture – Agricultural Research Service and Professor at Cornell University, was a Principal Investigator for various GCP research projects investigating how to improve grain yields of crops grown in acid soils. “GCP was interested in our work because we were working with such critical crops,” he says.

“The idea was to use discoveries made in the first half of the GCP’s 10-year programme – use comparative genomics to look into genes of rice and maize to see if we can see relations in those genes – and once you’ve cloned a gene, it is easier to find a gene that can work for other crops.”

The intensity of GCP-supported maize research shifted up a gear in 2007, after the team led by Jurandir Magalhães, research scientist in molecular genetics and genomics of maize and sorghum at EMBRAPA, used positional cloning to identify the major sorghum aluminium tolerance gene SbMATE responsible for the AltSB aluminium tolerance locus. The team comprised researchers from EMBRAPA, Cornell, the Japan International Research Center for Agricultural Sciences (JIRCAS) and Moi University in Kenya.

By combing the maize genome searching for a similar gene to sorghum’s SbMATE, Jurandir’s EMBRAPA colleague Claudia Guimarães and a team of GCP-supported scientists discovered the maize aluminium tolerance gene ZmMATE1. High expression of this gene, first observed in maize lines with three copies of ZmMATE1, has been shown to increase aluminium tolerance.  ZmMATE1 improves grain yields in acid soil by up to one tonne per hectare when introgressed in an aluminium-sensitive line.

Photos: 1 – V Alves ; 2 – F Mendes; both edited by C Guimarães

The genetic region, or locus, containing the ZmMATE1 aluminium tolerance gene is known as qALT6. Photo 1 shows a rhyzobox containing two layers of soil: a corrected top-soil and lower soils with 15 percent aluminium saturation. On the right, near-isogenic lines (NILs) introgressed with qALT6 show deeper roots and longer secondary roots in the acidic lower soil, whereas on the left the maize line without qALT6, L53, shows roots mainly confined to the corrected top soil. Photo 2 shows maize ears from lines without qALT6 (above) and with qALT6 (below); the lines with qALT6 maintain their size and quality even under high aluminium levels of 40 percent aluminium saturation.

The outcomes of these GCP-supported research projects provided the basic materials, such as molecular markers and donor sources of the positive alleles, for molecular-breeding programmes focusing on improving maize production and stability on acid soils in Latin America, Africa and other developing regions.

Kenya deploys powerful maize genes

One of those researchers crucial to achieving impact in GCP’s work in maize was Samuel (Sam) Gudu of Moi University, Kenya. From 2010 he was the Principal Investigator for GCP’s project on using marker-assisted backcrossing (MABC) to improve aluminium tolerance and phosphorous efficiency in maize in Kenya. This project combined molecular and conventional breeding approaches to speed up the development of maize varieties adapted to the acid soils of Africa, and was closely connected to the other GCP comparative genomics projects in maize and sorghum.

MABC is a type of marker-assisted selection (see box), which Sam’s team – including Dickson Ligeyo of KALRO – used to combine new molecular materials developed through GCP with Kenyan varieties. They have thus been able to significantly advance the breeding of maize varieties suitable for soils in Kenya and other African countries.

Marker-assisted selection helps breeders like Sam Gudu more quickly develop plants that have desirable genes. When two plants are sexually crossed, both positive and negative traits are inherited. The ongoing process of selecting plants with more desirable traits and crossing them with other plants to transfer and combine such traits takes many years using conventional breeding techniques, as each generation of plants must be grown to maturity and phenotyped – that is, the observable characteristics of the plants must be measured to determine which plants might contain genes for valuable traits.   By using molecular markers that are known to be linked to useful genes such as ZmMATE1, breeders can easily test plant materials to see whether or not these genes are present. This helps them to select the best parent plants to use in their crosses, and accurately identify which of the progeny have inherited the gene or genes in question without having to grow them all to maturity. Marker-assisted selection therefore reduces the number of years it takes to breed plant varieties with desired traits.

Maize and Comparative Genomics were two of seven Research Initiatives (RIs) where GCP concentrated on advancing researchers’ and breeders’ skills and resources in developing countries. Through this work, scientists have been able to characterise maize germplasm using improved trait observation and characterisation methods (phenotyping), implement molecular-breeding programmes, enhance strategic data management and build local human and infrastructure capacity.

The ultimate goal of the international research collaboration on comparative genomics in maize was to improve maize yields grown on acidic soils under drought conditions in Kenya and other African countries, as well as in Latin America. Seven institutes partnered up to for the comparative genomics research: Moi University, KALRO, EMBRAPA, Cornell University, the United States Department of Agriculture (USDA), JIRCAS and the International Rice Research Institute (IRRI).

“Before funding by GCP, we were mainly working on maize to develop breeding products resistant to disease and with increased yield,” says Sam. “At that time we had not known that soil acidity was a major problem in the parts of Kenya where we grow maize and sorghum. GCP knew that soil acidity could limit yields, so in the work with GCP we managed to characterise most of our acid soils. We now know that it was one of the major problems for limiting the yield of maize and sorghum.

“The relationship to EMBRAPA and Cornell University is one of the most important links we have. We developed material much faster through our collaboration with our colleagues in the advanced labs. I can see that post-GCP we will still want to communicate and interact with our colleagues in Brazil and the USA to enable us to continue to identify molecular materials that we discover,” he says. Sam and other maize researchers across Kenya, including Dickson, have since developed inbred, hybrid and synthetic varieties with improved aluminium tolerance for acid soils, which are now available for African farmers.

Photo: N Palmer/CIAT

A Kenyan maize farmer.

“We crossed them [the new genes identified to have aluminium tolerance] with our local material to produce the materials we required for our conditions,” says Sam.

“The potential for aluminium-tolerant and phosphorous-efficient material across Africa is great. I know that in Ethiopia, aluminium toxicity from acid soil is a problem. It is also a major problem in Tanzania. It is a major problem in South Africa and a major problem in Kenya. So our breeding work, which is starting now to produce genetic materials that can be used directly, or could be developed even further in these other countries, is laying the foundation for maize improvement in acid soils.”

Sam is very proud of the work: “Several times I have felt accomplishment, because we identified material for Kenya for the first time. No one else was working on phosphorous efficiency or aluminium tolerance, and we have come up with materials that have been tested and have become varieties. It made me feel that we’re contributing to food security in Kenya.”

Photo: N Palmer/CIAT

Maize grain for sale.

Maize for meat: GCP’s advances in maize genetics help feed Asia’s new appetites

Reaping from the substantial advances in maize genetics and breeding, researchers in Asia were also able to enhance Asian maize genetic resources.

Photo: D Mowbray/CIMMYT

A pig roots among maize ears on a small farm in Nepal.

Bindiganavile Vivek, a senior maize breeder for CIMMYT based in India, has been working with GCP since 2008 on improving drought tolerance in maize, especially for Asia, for two reasons: unrelenting droughts and a staggering growth the importance of maize as a feedstock. This work was funded by GCP as part of its Maize Research Initiative.

“People’s diets across Asia changed after government policies changed in the 1990s. We had a more free market economy, and along with that came more money that people could spend. That prompted a shift towards a non vegetarian diet,” Vivek recounts.

“Maize, being the number one feed crop of the world, started to come into demand. From the year 2000 up to now, the growing area of maize across Asia has been increasing by about two percent every year. That’s a phenomenal increase. It’s been replacing other crops – sorghum and rice. There’s more and more demand.

“Seventy percent of the maize that is produced in Asia is used as feed. And 70 percent of that feed is poultry feed.”

In Vietnam, for example, the government is actively promoting the expansion of maize acreage, again displacing rice. Other Asian nations involved in the push for maize include China, Indonesia and The Philippines.

Photo: A Erlangga/CIFOR

A farmer in Indonesia transports his maize harvest by motorcycle.

The problem with this growth is that 80 percent of the 19 million hectares of maize in South and Southeast Asia relies on rain as its only source of water, so is prone to drought: “Wherever you are, you cannot escape drought,” says Vivek. And resource-poor farmers have limited access to improved maize products or hybrids appropriate for their situation.

Vivek’s research for GCP focused on the development – using marker-assisted breeding methods, specifically marker-assisted recurrent selection (MARS) – of new drought-tolerant maize adapted to many countries in Asia. His goal was to transfer the highest expression of drought tolerance in maize into elite well-adapted Asian lines targeted at drought-prone or water-constrained environments.

Asia’s existing maize varieties had no history of breeding for drought tolerance, only for disease resistance. To make a plant drought tolerant, many genes have to be incorporated into a new variety. So Vivek asked: “How do you address the increasing demand for maize that meets the drought-tolerance issue?”

The recent work on advancing maize genetics for acid soils in the African and Brazilian GCP projects meant it was a golden opportunity for Vivek to reap some of the new genetic resources.

“This was a good opportunity to use African germplasm, bring it into India and cross it to some Asia-adapted material,” he says.

Photo: E Phipps/CIMMYT

Stored maize ears hanging in long bunches outside a house in China.

A key issue Vivek faced, however, was that most African maize varieties are white, and most Asian maize varieties are yellow. “You cannot directly deploy what you breed in Africa into Asia,” Vivek says. “Plus, there’s so much difference in the environments [between Africa and Asia] and maize is very responsive to its environment.”

The advances in marker-assisted breeding since the inception of GCP contributed significantly towards the success of Vivek’s team.

“In collaboration with GCP, IITA, Cornell University and Monsanto, CIMMYT has initiated the largest public sector MARS breeding approach in the world,” says Vivek.

The outcome is good: “We now have some early-generation, yellow, drought-tolerant inbred germplasm and lines suitable for Asia.

“GCP gave us a good start. We now need to expand and build on this,” says Vivek.

GCP’s supported work laid the foundation for other CIMMYT projects, such as the Affordable, Accessible, Asian Drought-Tolerant Maize project funded by the Syngenta Foundation for Sustainable Agriculture. This project is developing yet more germplasm with drought tolerance.

A better picture: GCP brightens maize research

Dickson Ligeyo’s worries of a stormy future for Kenya’s maize production have lifted over the 10 years of GCP. At the end of 2014, Kenya had two new varieties that were in the final stage of testing in the national performance trials before being released to farmers.

“There is a brighter picture for Kenya’s maize production since we have acquired acid-tolerant germplasm from Brazil, which we are using in our breeding programmes,” Dickson says.

In West Africa, researchers are also revelling in the opportunity they have been given to help enhance local yields in the face of a changing climate. “My institute benefited from GCP not only in terms of human resource development, but also in provision of some basic equipment for field phenotyping and some laboratory equipment,” says Allen Oppong in Ghana.

“Through the support of GCP, I was able to characterise maize landraces found in Ghana using the bulk fingerprinting technique. This work has been published and I think it’s useful information for maize breeding in Ghana – and possibly other parts of the world.”

The main challenge now for breeders, according to Allen, is getting the new varieties out to farmers: “Most people don’t like change. The new varieties are higher yielding, disease resistant, nutritious – all good qualities. But the challenge is demonstrating to farmers that these materials are better than what they have.”

Photo: CIMMYT

This Kenyan farmer is very happy with his healthy maize crop, grown using an improved variety during a period of drought.

Certainly GCP has strengthened the capacity of researchers across Africa, Asia and Latin America, training researchers in maize breeding, data management, statistics, trial evaluations and phenotyping. The training has been geared so that scientists in developed countries can use genetic diversity and advanced plant science to improve crops for greater food security in the developing world.

Elliot Tembo, a maize breeder with the private sector in sub-Saharan Africa says: “As a breeder and a student, I have been exposed to new breeding tools through GCP. Before my involvement, I was literally blind in the use of molecular tools. Now, I am no longer relying only on pedigree data – which is not always reliable – to classify germplasm.”

Allen agrees: “GCP has had tremendous impact on my life as a researcher. The capacity-building programme supported my training in marker-assisted selection training at CIMMYT in Mexico. This training exposed me to modern techniques in plant breeding and genomics. Similarly, it built my confidence and work efficiency.”

There is no doubt that GCP research has brightened the picture for maize research and development where it is most needed: with researchers in developing countries where poor farmers and communities rely on maize as their staple food and main crop.

More links

Photo: N Palmer/CIAT

A farmer displays maize harvested on his farm in Laos.

Oct 082015
 

 

Photo: IITA

Ousmane Boukar

“There is a clear need to develop a range of varieties that meet diverse requirements”

For 30 years, Ousmane Boukar has been working towards a singular goal: to improve and secure cowpea production in sub-Saharan Africa.

Cowpeas are very important in sub-Saharan Africa,” he says. “They are an important source of protein, and contribute to the livelihood and food security of millions.”

Despite their dietary importance, cowpea yields in Africa are low – on average a mere 10 to 30 percent of their potential. This is primarily because of attacks from insects and diseases, but is often further compounded by chronic drought.

Since 2007, Ousmane has worked for the International Institute of Tropical Agriculture (IITA) as cowpea breeder and Station Representative in Kano, Nigeria. As a breeder, his mission is to improve yields by identifying additional genetic sources of resistance to pests and diseases, tolerance of parasitic weeds, improved drought tolerance and adaptation to low soil fertility.

To accomplish this, he searches for genes associated with these kinds of valuable traits. He then uses this information to develop breeding populations comprising of plant lines with multiple useful traits, and works with farmers to grow these populations to make sure they do grow well in the field before releasing them as new varieties.

“Cowpea breeding is very challenging because of the range of production environments and cropping systems, and the diverse preferences among consumers and producers for grain, leaves, pods and fodder,” Ousmane says. “There is a clear need to develop a range of varieties that meet those diverse requirements, combining high yield potential and resistance to the major production constraints.”

Photo: IITA

A farmer’s field full of cowpea plants (with maize at the background) in Kano, Nigeria.

Joining an international programme

The same year Ousmane joined IITA, he joined forces in a new collaboration with cowpea breeders and geneticists from Burkina Faso, Mozambique, Senegal and the USA. He was Product Delivery Coordinator for the cowpea component of the Tropical Legumes I project (TLI) – a seven-year project funded by the CGIAR Generation Challenge Programme (GCP) that sought to use marker-assisted breeding techniques to breed high yielding, drought-tolerant and insect- and disease-resistant varieties of four important legumes.

Photo: IITA

Cowpea plants at podding stage.

“TLI has had a huge impact in Africa in terms of developing capacity to carry out marker-assisted breeding. This form of breeding helps us to breed new varieties in three to five years instead of seven to ten years.”

Key outcomes from the cowpea component of the project were a cowpea genome map and molecular markers that have helped breeders like Ousmane locate the genes in cowpeas that determine and regulate desirable traits. These markers can be used like flags to indicate which potential parent plants have useful genes, and which of the progeny from each cross have inherited them, making breeding more efficient.

“We have used this technology to develop advanced breeding lines that are producing higher yields in drier conditions and displaying resistance to several pests and diseases such as thrips [insects which feed on cowpeas] and Striga [a parasitic weed]. We expect these lines to be available to plant breeders by the end of 2015.”

Photo: IITA

Cowpea seed.

Ousmane says the success of the cowpea component of TLI owes much to the pre-existing relationships the partners had before the project. “TLI was an extension of a USAID collaborative project [Bean/Cowpea Collaborative Research Support Program] we had been working on since 2002,” he explains. “I had also crossed paths with breeders in Senegal, Burkina Faso and USA many times when I worked with the Institute of Agricultural Research for Development [IRAD] in Cameroon.”

Photo: IITA

Striga in a cowpea plot.

Ousmane was with IRAD in his home country of Cameroon from 1990 to 2007. He also worked by correspondence during this time to complete both his Master’s and Doctoral degrees in Plant Breeding and Genomics from the University of Purdue in Indiana, USA. His thesis involved characterising and mapping Striga resistance in cowpeas. Striga is a parasitic weed widespread in West Africa, which can reduce susceptible cultivar yields by up to 100 percent. Resistance within the host plant is the only practical control method (see ‘Cowpea in between’, GCP Partner and Product Highlights 2006, page 23).

Photo: IITA

A trader sells cowpeas in Moniya market, Ibadan, Nigeria.

Taking the lead in the Community of Practice

In 2011, in addition to his TLI and Product Delivery Coordinator roles, Ousmane became the coordinator of the Cowpea Community of Practice (CoP) – a newly created network founded by GCP to develop capacity in Africa and help GCP researchers share their new expertise in molecular breeding.

“The CoP was designed for cowpea researchers and people interested in cowpeas to ask questions and to share their expertise and knowledge, particularly with people who don’t have the experience, such as graduate students or breeders new to cowpeas,” Ousmane explains. Members are from Burkina Faso, Cameroon, Kenya, Malawi, Mali, Mozambique, Niger, Nigeria, Senegal, Tanzania and USA.

“My role as coordinator is to collect ideas, find funding opportunities, and understand member expertise and resources so I can direct members of the community to the right people.”

Photo: TREE AID

Ghanaian farmer Alanig Bawa drying cowpeas.

Ousmane says the position has opened his eyes to all the new research going on in cowpea. The number of new researchers in the field also heartens him. “There are more researchers that are practising molecular breeding than ever before, which is great, because we can enhance their impact and efficiency in cowpea breeding.”

As membership grows, Ousmane is confident that the community and capacity that have developed with help from GCP will remain sustainable after GCP’s close at the end of 2014. “Governments in Nigeria and Burkina Faso understand the importance of cowpeas and are investing in our research. As the set of skills and the number of personnel grow in other sub-Saharan countries, we are confident that cowpea research will expand and produce higher yielding varieties for their farmers.”

More links

 

Oct 072015
 

Young Nigerian scientists often leave Africa and look for jobs with international research agencies overseas. But with the CGIAR Generation Challenge Programme (GCP)-funded Cassava Research Initiative (RI), two young nationals have been leading the international collaboration and injecting confidence into Africa’s research capacity.

Leadership is a quality admired and consistently sought after, particularly when overcoming a challenge. Some leaders direct from afar; others rise through the ranks and work with their peers on the ground – winning respect from the people they lead as they get their hands dirty.

Photo: G Norton

Dream team: Emmanuel Okogbenin (left) and Chiedozie Egesi (right), both of Nigeria’s National Root Crops Research Institute.

“If you want to work for the people, you have to walk with the people – that’s an African concept,” says Emmanuel Okogbenin, a plant breeder and geneticist at Nigeria’s National Root Crops Research Institute (NRCRI). “Then when you work with the people, you really understand what they want. When you speak, they know they can trust you.”

This powerful sentiment is one reason why GCP sought the collaboration of NRCRI in overcoming the challenge of sustaining Africa’s, and indeed the world’s, cassava production.

Having started as a small farm in 1923, NRCRI has taken giant strides to become one of Nigeria’s best research institutes, contributing immensely to the country’s economic development and making it the leading producer of cassava in the world. NRCRI Executive Director Julius Chukwuma Okonkwo says, “This would not have been attainable if not for the trust and support that GCP had in us when they made two of our young cassava researchers the leaders of an international collaboration.”

The two researchers to whom Julius refers are Emmanuel and his colleague Chiedozie Egesi, also a plant breeder and geneticist at NRCRI. Their combined 36 years’ of cassava research experience is matched by their passion to get the best out of Nigeria’s main staple crop.

And they are happy to get some dirt under their fingernails. “It’s just as important to work with the farmers in the field and understand what they want, as it is to do the research in the lab,” says Emmanuel. “At the end of the day we need to please the farmers, as they are the ones who will be using the new varieties that we are developing to sustain their livelihoods.”

Photo: IITA

Nigerian farmers display their cassava harvest.

Developing and leading Africa’s cassava research

Between 2010 and 2014, both Emmanuel and Chiedozie led three different projects within GCP’s Cassava RI, working with other colleagues in national breeding programmes in Ghana, Tanzania and Uganda, as well as the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT), the Brazilian Corporation of Agricultural Research (EMBRAPA) and Cornell University in the USA. The aim of the initiative was to use molecular-breeding techniques to accelerate the development of high-starch cassava varieties with resistance to diseases and tolerance to drought – and so ensure both food supplies and income for farmers.

Meet Chiedozie and Emmanuel in the video playlist below, learn more about cassava in Africa, and hear all about their research (or watch on Youtube):

Emmanuel explains that before GCP, “most African national programmes didn’t really have established crop-breeding programmes, and didn’t have the resources” to do the scale of research GCP assisted with. Nor did they have the capacity to use molecular-breeding techniques, which can potentially halve the time it takes to develop new varieties.

With help from GCP and CIAT, NRCRI was able to equip a new molecular-breeding laboratory, and staff were trained to incorporate molecular-breeding techniques into their breeding programme. “GCP was there not only to provide technology, but also to guide us in how to operate that technology,” explains Chiedozie.

Julius points out that both Chiedozie and Emmanuel were also influential in disseminating this knowledge and, in turn, building and sustaining NRCRI’s human capacity. “They both mentored many young scientists who have chosen a career in cassava and molecular breeding because of this.”

Photo: IITA

Transporting a bountiful cassava harvest from farm to market in Nigeria.

With training and infrastructure in place, NRCRI led an international collaboration that in 2010 released Africa’s first cassava variety developed using molecular-breeding techniques. Known as UMUCASS33 (or CR 41-10), it was resistant to cassava mosaic disease (CMD) – a devastating plant disease that can wipe out farmers’ entire cassava crops – and also highly nutritious. This was swiftly followed by a second similar variety, CR 36-5, and supplied to farmers.

Between this landmark release and GCP’s close in 2014, the cassava team had already released nearly 20 higher yielding, more nutritious varieties resistant to diseases and pests, and had begun working on developing drought-tolerant varieties.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold: “Through these materials, people’s livelihoods can be improved. The food people grow should be nutritious, resistant and high-yielding enough to allow them to sell some of it and make money for other things in life, such as building a house, getting a motorbike or sending their kids to school.” This social aspect is particularly pertinent in Nigeria, where these cassava varieties will have the greatest impact.

Five years, 20 new varieties for African farmers Between 2010 and 2014, NRCRI and its collaborators developed and released multiple new cassava varieties with a combination of traits. This work has continued after the closure of GCP, with more releases in the pipeline. Disease and pest resistance During 2010-2014 the team released several varieties of cassava resistant to cassava mosaic disease (CMD) for different environments in Nigeria, Ghana, Uganda and Tanzania as well as several varieties resistant to cassava brown streak disease (CBSD) – a similarly devastating disease originating in Tanzania but quickly spreading into Uganda and further west. They have also developed new varieties with combined resistance to CMD and CBSD. These have the potential to double the yield of existing commercial varieties. The team has also worked with Tanzanian breeders to develop cassava varieties that are resistant to bacterial blight and green mites. These new Tanzanian varieties are on their way to commercial breeders and will be available to farmers by 2015–16. High starch content In 2012 the team released a variety with very high starch content – an essential element of good cassava.  Improved nutrition In 2011, the NRCRI team, together with IITA and HarvestPlus (another CGIAR Challenge Programme focussed on the nutritional enrichment of crops), released three cassava varieties rich in pro-vitamin A, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A requirement. Since then, the team has aimed to increase this figure to 50 percent. In 2014, they released three more pro-vitamin A varieties with higher concentrations of beta-carotene.

Feeding a giant

Photo: IITA

Nigerian farmer with his bountiful cassava harvest.

Nigeria is often referred to as the ‘Giant of Africa’. It is the most populous African country, with over 174 million inhabitants. The population’s main staple food is cassava, making Nigeria the world’s largest producer and consumer of the crop. At the same time, the country imports almost USD 4 billion of wheat every year – a figure that is expected to quadruple by 2030 if wheat consumption continues to grow at the same rate it is today.

The government is wary of this ‘overreliance’ on imported grain and is working towards making the country less reliant on wheat by imposing a wheat tariff. It also hopes to boost cassava production and commercialisation by promoting 20 percent substitution of cassava flour for wheat in breadmaking.

“The government feels that to quickly change the fortunes of farmers, cassava is the way to go,” explains Emmanuel, who liaises with the Nigerian Government to promote to farmers the benefit of cassava varieties with high starch concentrations. It is the flour from these varieties that is being used to partially replace wheat flour to make bread. GCP support has been crucial here too, in providing vital scientific information to the government. Emmanuel explains: “The tariff from wheat is expected to be ploughed back to support agricultural development – especially in the cassava sector – as the government seeks to increase cassava production to support flour mills.”

Cassava offers a huge opportunity to transform the agricultural economy, stimulate rural development and further improve Nigeria’s gross domestic product. In 2014, Nigeria’s economy surpassed that of South Africa’s to become the largest on the continent. By 2050, Nigeria is expected to rise further and become one of the world’s top 20 economies.

Unfortunately, however, like many growing economies worldwide, Nigeria is still working to address severe inequality, including in the distribution of wealth and in feeding the country’s expanding population.

Photo: IITA

A woman with her children at work in a cassava processing centre in Nigeria.

It’s a problem Chiedozie understands well: “Nigeria is an oil-producing country, but you still see grinding poverty in some cases,” he says. “Coming from a small town in the southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school,” he reveals. The poverty challenge, he explains, hits smallholder farmers particularly hard: “Urban development caught up with them in the end: some of them don’t even have access to the land that they inherited, so they’re forced to farm along the street.”

For Chiedozie, the seemingly bleak picture only served to ignite a fierce determination and motivation to act: “Despite the social injustice around me, I always thought there was opportunity to improve people’s lives.” And thus galvanised by the plight of Nigerian farmers, Chiedozie promptly shelved his plans for a career in medical surgery and pursued biological sciences and a PhD in crop genetics, a course he interspersed with training stints in the USA at Cornell University and the University of Washington, before returning to his homeland to accept a job as head of the cassava breeding team, and – following a promotion in 2010 – to become Assistant Director of the Biotechnology Department at NRCRI.

Empowering African researchers

Photo: IITA

Carrying cassava at a processing centre in Nigeria.

Emmanuel, who followed a similar educational route to Chiedozie, says both he and his colleague are exceptions to the norm in Africa, where African researchers tend to look for opportunities at international or private institutes rather than in national breeding programmes.

“It is difficult being a researcher in Africa,” says Emmanuel. “We don’t get paid as much as breeders in more developed countries, and funding is very hard to obtain.”

Emmanuel says his proudest moment was when GCP was looking for Africans to take up leadership roles. “They felt we could change things around and set a precedent to bring people back to the continent,” he says. “They appreciated our values and the need to install African leaders on the ground in Africa rather than in Europe, Asia or the Americas.”

Jean-Marcel Ribaut, GCP’s Director, says that seeking this local leadership was a novel approach for a transnational programme like GCP at the time, and proved to be an imperative feature for all GCP Research Initiatives. “The reasoning behind the approach is two-fold: Firstly, it’s important that our national partners share in feeling ownership of the projects and outcomes; secondly, they are gaining experience in the role so they can continue to do so after the close of the Programme in 2014,” he says. “We feel that most of our leading institutes, NRCRI included, are in a better position now than when they joined the project, and that this, along with their experience, has already gained them more exposure and funding opportunities.”

This is indeed true of the NRCRI cassava team, which is engaging with the Bill & Melinda Gates Foundation, Cornell University, IITA and Uganda’s National Crop Resources Research Institute in an initiative that Chiedozie promises will be at the front of cutting-edge technology. “We are still working out specifics, but it will see us continuing to use marker-assisted breeding techniques to develop higher yielding, stress-tolerant cassava varieties.”

Chiedozie adds this would not have been possible without GCP, which helped them to develop their capacity in Nigeria and in Africa, and this has “created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Photo: IITA

Before GCP came along, cassava was something of an orphan crop in agricultural research. Among the challenges to efficient breeding of cassava are that it is slow to grow and is propagated, not by seed, but using cut sections of stem like those shown. But with investment and capacity building from GCP, particularly in molecular breeding tools, African cassava scientists have gained a new confidence and prestige.

Continuing the momentum

One organisation that has been impressed by the work done at NRCRI is the CGIAR Research Program on Roots, Tubers and Bananas (RTB). RTB Director Graham Thiele has been following the work done at NRCRI since 2010 with great interest. “We have been really impressed to see a national programme like NRCRI playing a leading role in these successful GCP projects, and grow as a result of this,” he says.

One area of research that has particularly impressed Graham is Chiedozie and Emmanuel’s pre-emptive breeding for cassava brown streak disease (CBSD) resistance. “CBSD isn’t currently an issue in Nigeria but it has the potential to wipe out all crops, as it has in Uganda and Tanzania, if it continues to spread west from these countries,” he explains.

“What Chiedozie and Emmanuel are doing is using molecular markers, developed in collaboration with IITA, to search for genes in their varieties that confer resistance to brown streak virus. They can then use these when breeding for CBSD resistance without exposing cassava to the virus. It’s very exciting and forward thinking, as normally people breed for resistance only when the disasters happen.”

As GCP approached its sunset in December 2014, Chiedozie and Emmanuel were reaching out to RTB to seek funding to continue this and other projects they are currently working on. “They’ve already created some great varieties but have plenty more in the pipeline, so we want to help them finish this work and, most importantly, keep the momentum going,” says Graham.

Chiedozie looks forward to the next steps with optimism, confirming that the new collaboration will continue in the quest to “give African farmers varieties of cassava that they will love to grow.”

More links

Photo: IITA


Healthy improved cassava varieties growing in the field.

 

Oct 052015
 

Cassava brings life to African people

Photo: N Palmer/CIATBeyond the glittering coastline of what was once known as the Gold Coast, Ghana’s shrublands and rich forested hills are split by forking rivers that reach inland through the country’s lush tropics, into drier western Africa. In the past 40 years, seven major droughts have battered the people of Africa – with the most significant and devastating occurring in the Sahel region and the Horn of Africa in the early 1970s and 1980s.

Photo: Y Wachira/Bioversity International

This little girl in Kenya already seems to know that cassava roots are precious.

But despite the massive social disruption and human suffering that these droughts cause, life goes on. In south-eastern Ghana and in Togo, the three-million-plus people who speak the Ewe language have a word for this. It is agbeli: ‘There is life’. It is no coincidence that this word is also their name for a tropical and subtropical crop that survives through the worst times to feed Africa’s families: cassava.

Cassava is a lifeline for African people, and is a particularly important staple food for poorer farmers. More cassava is produced in Africa than any other crop, and it is grown by nearly every farming family in sub-Saharan Africa, supplying about a third of the region’s daily energy intake. In the centuries since Portuguese traders introduced this Amazonian plant to Africa, cassava has flourished, yielding up to 40 tonnes per hectare.

Hear more on just why cassava is so important to food security from Emmanuel Okogbenin, of Nigeria’s National Root Crops Research Institute, in the video below (or watch on Youtube):

 

African countries produced nearly 140 million tonnes of cassava in 2012 – but most of the production is subsistence farming by small-scale farmers. Even the undisputed global cassava giant, Nigeria, currently produces only just enough to feed its population – and although the country is increasingly moving towards production of cassava for export as an industrial raw material, the poorest farmers often do not produce enough to sell, or have access to these markets.

Because cassava does so well on poor soils, on marginal land and with little rainfall, it can outlast its more sophisticated crop competitors: wheat, rice and maize. In fact, under harsh conditions such as drought, the amount of energy a given area of cassava plants can produce in the form of starchy carbohydrates outstrips all other crops. Chiedozie Egesi, a plant breeder and geneticist at Nigeria’s National Root Crops Research Institute (NRCRI), describes cassava as “the crop you can bet on when every other thing is failing”.

Benefits of cassava to African farmers and families Most cassava grown is consumed as food – for instance, as starchy, fine powder called tapioca or the fermented, flaky garri. The tubers can also be eaten boiled or fried in chunks, and are used in many other local dishes.  If cassava is grown in favourable conditions, its firm, white flesh can be rich in calcium and vitamin C and contain other vitamins such as B1, B2 and niacin. Some improved varieties are fortified with increased vitamin A levels, giving them a golden hue.   As well as being eaten directly, cassava can also be processed into ingredients for animal feed, alcohol production, confectionery, sweeteners, glues, plywood, textiles, paper and drugs.  Cassava tubers are easy to save for a rainy day – unlike other crops, they can be left in the ground for up to two years, so harvesting can be delayed until extra food is needed, or to await more optimal processing or marketing conditions.

Despite cassava’s superhero cape, however, there’s no denying that its production is not at its highest when faced with diseases, pests, low-nutrient soils and drought. How plants deal with problems like low nutrients or dry conditions is called ‘stress tolerance’ by scientists. Improving this tolerance – plus resistance to diseases and pests – is the long-term goal for staple crops around the world so that they have higher yields in the face of capricious weather and evolving threats.

In the 1980s, catastrophe struck cassava production in East and Central Africa. A serious outbreak of cassava mosaic disease (CMD) – which first slowly shrivels and yellows cassava leaves, then its roots – lasted for almost 15 years and nearly halved cassava yields in that time. Food shortages led to localised famines in 1993 and 1997.

Other diseases affecting cassava include cassava brown streak disease (CBSD), cassava bacterial blight, cassava anthracnose disease and root rot. CBSD is impossible to detect above ground. Its damage is revealed only after harvest, when it can be seen that the creeping brown lesions have spoilt the white flesh of the tubers, rendering them inedible. Many cassava diseases are transmitted through infected cuttings, affecting the next generation in the next season. Pests that also prey on cassava include the cassava green mite and the variegated grasshopper.

Between the effects of drought, diseases, pests and low soil nutrients, cassava yields vary widely – losses can total between 50 and 100 percent in the worst times.

Photo: IITA

Symptoms of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), both of which can cripple cassava yields.

GCP takes the first steps to kick start cassava research

The next step forward for cassava appeared to be research towards breeding stronger and more resilient cassava varieties. However, cassava research had long been neglected – scientists say it’s a tricky crop that has garnered far less policy, scientific and monetary interest than the comparatively glamorous crops of maize, rice and wheat.

Watch as Emmanuel tells us more about the complexities and challenges of cassava breeding in the video below (or on YouTube):

 

Cassava is a plant which ‘drags its feet’: creating new plants has to be done from cuttings, which are costly to cut and handle and don’t store well; the plant takes up to two years to grow to maturity; and it is onerous to harvest. Elizabeth Parkes, of Ghana’s Crops Research Institute (CRI) (currently on secondment at the International Institute of Tropical Agriculture, IITA), says the long wait can be difficult.

This is where the work of scientists funded by the CGIAR Generation Challenge Programme (GCP) came in. Plant breeder and molecular geneticist Emmanuel Okogbenin of NRCRI led the cassava research push launched in 2010. He explains that before GCP, “most national programmes didn’t really have established crop breeding programmes, and didn’t have the manpower” to do the scale of research GCP supported.

Usually, researchers looking to breed crops that are more resistant to drought, diseases and pests would use conventional breeding methods that could take considerable time to deliver any results, especially given cassava’s slow path to maturity. Researchers would be trying to select disease- and pest-resistant plants by looking at how they’re growing in the field, without any way to see the different genetic strengths each plant has.

Photo: M Mitchell/IFPRI

An IITA researcher exams cassava roots in the field.

This is where new ‘molecular breeding’ tools are particularly useful, given that – genetically – cassava presents more of a challenge to breeders than its cereal counterparts. Like many other vegetatively propagated crops, cassava is highly heterozygous, meaning that the counterpart genes on paired chromosomes tend to be different versions, or alleles, rather than the same. This makes it difficult to identify good parent plants for breeding and, after these are crossed, to accurately select progeny with desired traits. Useful – or detrimental – genes can be present in a cassava plant’s genetic code but not reflected in the plant itself, making breeding more unpredictable – and adding extra obstacles to the hunt for the exact genes that code for better varieties of cassava.

Although late to the world of molecular breeding, cassava had not missed its chance. Guided by GCP’s ambitious remit to increase food security through modern crop breeding, GCP-supported scientists have applied and developed molecular breeding methods that shorten the breeding process by identifying which plants have good genes, even before starting on that long cassava growth cycle. Increasing the capacity of local plant breeders to apply these methods has great potential for delivering better varieties to farmers much faster than has traditionally been the case.

Charting cassava’s genetic material was the first step in the researchers’ molecular quest. Part of the challenge for African and South American researchers was to create a genetic map of the cassava genome. Emmanuel describes the strong foundation that these early researchers built for those coming after: “It was significant when the first draft of the cassava genome sequence was released. It enabled rapid progress in cassava research activities and outcomes, both for GCP and cassava researchers worldwide.”

Photo: N Palmer/CIAT

Cassava on sale in Kampala, Uganda.

Once cassava’s genome had been mapped, the pace picked up. In just one year, GCP-supported scientists phenotyped and genotyped more than 1000 genetically different cassava plants – that is, measured and collected a large amount of information about both their physical and their genetic traits – searching for ‘superstar’ plants with resistance to more than one crop threat. During this process, scientists compare plant’s physical characteristics with their genetic makeup, looking for correlations that reveal regions of the DNA that seem to contain genes that confer traits they are looking for, such as resistance to a particular disease. Within these, scientists then identify sequences of DNA, or ‘molecular markers’, associated with these valuable genes or genetic regions.

Plant breeders can use this knowledge to apply an approach known as marker-assisted selection, choosing their breeding crosses based directly on which plants contain useful genes, using markers like tags. This makes producing better plant varieties dramatically faster and more efficient. “It narrowed the search at an early stage,” explains Emmanuel, “so we could select only material that displayed markers for the genetic traits we’re looking for. There is no longer any need to ship in tonnes of plant material to Africa.”

Like breadcrumbs leading to a clue, breeders use markers to lead to identifying actual genes (rather than just a site on the genome) that give certain plants desirable characteristics. However, this is a particularly difficult process in cassava. Genes are often obscured, partly due to cassava’s highly heterozygous nature. In trials in Africa, where CMD is widespread, resistant types were hard to spot when challenged with the disease, and reliably resistant parents were hard to pin down.

This meant that two decades of screening cassava varieties from South America – where CMD does not yet exist yet – had identified no CMD-resistance genes. But screening of cassava from Nigeria eventually yielded markers for a CMD-resistance gene – a great success for the international collaborative team led by Martin Fregene, who was based in Colombia at the International Center for Tropical Agriculture (CIAT).

This finding was a win for African plant breeders, as it meant they could use molecular breeding to combine the genes producing high-quality and high-yielding cassava from South America with the CMD-resistance gene found in cassava growing in Nigeria.

Chiedozie Egesi, who led the work on biotic trait markers, explains the importance of combining varieties from South America with varieties from Africa: “Because cassava is not native to Africa, those varieties are not as genetically diverse, so we needed to bring genetic diversity from the centre of origin: South America. Coupling resistance genes from African varieties with genes for very high yields from South America was critical.”

Cassava research leaps forward with new varieties to benefit farmers

GCP’s first investment phase into cassava research stimulated a sturdy injection of people, passion, knowledge and funds into the second phase of research. From the genome maps created during the first phase, some of the world’s best geneticists would now apply genomic tools and molecular breeding approaches to increase and accelerate the genetic gains during breeding, combining farmers’ favourite characteristics with strong resistances and tolerances to abiotic and biotic constraints.

In the sprawling, tropical city of Accra on Ghana’s coast, the second phase of the research was officially launched at the end of the wet season in mid-2010. NRCRI’s Emmanuel Okogbenin coordinated product delivery from the projects, but the roles of Principal Investigator for the different projects were shared between another four individuals.

These were breeder and geneticist Chiedozie Egesi (NRCRI, Nigeria), molecular geneticist Morag Ferguson (IITA), genomic scientist Pablo Rabinowicz (University of Maryland, USA) and physiologist and geneticist Alfredo Alves (Brazilian Corporation of Agricultural Research, EMBRAPA). The team shared the vision of enabling farmers to increase cassava production for cash, well beyond subsistence levels.

Photo: A Hoel/World Bank

Garri, or gari, a kind of granular cassava flour used to prepare a range of foods.

If the Accra launch set the stage for the next five years of cassava collaboration, a breakthrough in Nigeria at the end of 2010 set the pace, with the release of Africa’s first cassava variety developed using molecular-breeding techniques. “It was both disease-resistant and highly nutritious – a world-first,” recalls Emmanuel proudly.

Known as UMUCASS33 (or CR41-10), it took its high yield and nutritional value from its South American background, and incorporated Nigerian resistance to devastating CMD attacks thanks to marker-assisted selection. It was also resistant to several other pests and diseases. UMUCASS33 was swiftly followed by a stream of similar disease-busting varieties, released and supplied to farmers.

Never before had cassava research been granted such a boost of recognition, scientific might and organisational will. And never before had there been so much farmer consultation or so many on-farm trials.

“Cassava was an orphan crop and with the help of GCP it is becoming more prominent,” says Chiedozie. “GCP highlighted and enhanced cassava’s role as a major and reliable staple that is important to millions of poor Africans.”

Another important challenge for scientists was to develop a higher-yielding cassava for water-limited environments. The aim was to keep mapping genes for resistance to other diseases and pests and then combine them with favourable genetics that increase yield in drought conditions – no easy feat. Drought’s wicked effect on cassava is to limit the bulk of the tuber, or sometimes to stop the tuber forming altogether. Emmanuel led the work on marker-assisted recurrent selection for drought.

Hear from Chiedozie on the beneficial outcomes of GCP – in terms not only of variety releases but also of attracting further projects, prestige, and enthusiastic young breeders – in the video below (or on YouTube):

Many traits and many varieties

As closely as the cassava teams in Africa were working together, Chiedozie recalls that each country’s environment demanded different cassava characteristics: “We had to select for what worked best in each country, then continue with the research from there. What works fine for East Africa may not be so successful in Nigeria or Ghana”. A core reference set representing most of the diversity of cassava in Africa was improved with the addition of over 564 varieties. Improving the reference set, says project leader Morag Ferguson, “enables the capture of many diverse features of cassava” within a relatively small collection, providing a pathway for more efficient trait and gene discovery.

While mapping of cassava’s genetic makeup carried on, with a focus on drought tolerance, researchers continued to develop a suite of new varieties. They mapped out further genes that provided CMD resistance. In Tanzania, four new varieties were released that combined resistance to both CMD and CBSD – two for the coastal belt and two for the semi-arid areas of central Tanzania. These new varieties had the potential to double the yield of existing commercial varieties. In Ghana too, disease-resistant varieties were being developed.

Photo: IITA

Built-in disease resistance can make a huge difference to the health of cassava crops. This photo shows a cassava variety resistant to African cassava mosaic virus (ACMV), which causes cassava mosaic disease (CMD), growing on the left, alongside a susceptible variety on the right.

Meanwhile in Nigeria, another variety was released in 2012 with very high starch content – an essential factor in good cassava. This is a critical element to breeding any crop, explains Chiedozie: “A variety may be scientifically perfect, based on a researcher’s perspective, but farmers will not grow it if it fails the test in terms of taste, texture, colour or starchiness.”

Geoffrey Mkamilo, cassava research leader at Tanzania’s Agricultural Research Institute, Naliendele, says that farmer awareness and adoption go hand in hand. Once they had the awareness, he says, “the farmers were knocking on our doors for improved varieties. They and NGOs were knocking and calling.”

After groundwork in Ghana and Nigeria to find potential sources of resistance, cassava varieties that are resistant to bacterial blight and green mites were also developed in Tanzania and then tested. By the time GCP closed in December 2014, these varieties were on their way to commercial breeders for farmers to take up.

Scientists seeking to resolve the bigger challenge of drought resistance have achieved significant answers as well. Researchers have been able to map genetic regions that largely account for how well the crops deal with drought.

Developing new varieties takes people, and time The numbers of new cassava varieties so far released through GCP-supported research do not tell the full story.   They certainly do not illustrate the patience and skill required from many different people to get to that end-stage of having a new cassava variety. In the first step, after the plants that seem to have resistance to CMD are identified, those plants are cloned and grown.   The DNA of these plantlets is then exposed to markers specific to valuable resistance genes, or regions of the genome known as quantitative trait loci (QTLs), in order to confirm the presence of the gene or QTL in question. Confirmed plants can be used as parents in breeding crosses after growing out and flowering – although sometimes plants don’t flower, another hurdle for the cassava breeder.  This parental selection using genetic information is a powerful way to make cassava breeding more efficient. Breeders also use markers to identify which of the progeny from each cross have inherited the genes they are interested in. Over several generations of crosses, scientists can combine genes and QTLs for useful traits from different plant lines, to eventually develop a new variety for cultivation.  In cassava, this complex process can take seven years – although it takes even longer using only conventional breeding techniques. While fruition is slow, the research aided by GCP has sown the seeds for many more new varieties and bumper harvests for farmers into the future.

Hunt for ‘super powered’ cassava

The hunt was on for drought-tolerance genes in African cassava plants. The end goal was to find as many different drought-related genes as possible, then to put them all together with the applicable disease and pest resistance genes, to make a ‘super powered’ set of cassava lines. Molecular breeders call this process ‘pyramiding’, and in Ghana, Elizabeth Parkes led these projects.

With the help of Cornell University scientists, the researchers compared plants according to their starch content, how they endured a dry season, how they used sunlight and how they dealt with pests and diseases.

Fourteen gene regions or quantitative trait loci (QTLs) were identified for 10 favourable traits from the genetic material in Ghana, while nine were found for the plants in Nigeria – with two shared between the plants from both Ghana and Nigeria. After that success, the identified genes were used in breeding programmes to develop a new generation of cassava with improved productivity.

Pyramiding is important in effective disease resistance; Chiedozie explains in the video below (or on YouTube):

Photo: HarvestPlus

New cassava varieties rich in pro-vitamin A have a telltale golden hue.

The research has also delivered results in terms of Vitamin A levels in cassava. In 2011, the NRCRI team, together with IITA and HarvestPlus (another CGIAR Challenge Programme focussed on the nutritional enrichment of crops), released three cassava varieties rich in pro-vitamin A, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A requirement. Since then, the team has aimed to increase this figure to 50 percent. In 2014, they released three more pro-vitamin A varieties with even higher concentrations of beta-carotene.

Photo: IITA

A field worker at IITA proudly displays a high-yielding, pro-vitamin A-rich cassava variety (right), compared with a traditional variety (left).

The new varieties developed with GCP support are worth their weight in gold, says Chiedozie: “Through these varieties, people’s livelihoods can be improved. The food people grow should be nutritious, resistant and high-yielding enough to allow them to sell some of it and make money for other things in life, such as building a house, getting a motorbike or sending their kids to school.”

Turning from Nigeria to Tanzania, Geoffrey has some remarkable numbers. He says that the national average cassava yield is 10.5 tonnes per hectare. He adds that a new cassava variety, PWANI, developed with GCP support and released in 2012, has the potential to increase yields to 51 tonnes per hectare. And they don’t stop there: the Tanzanian researchers want to produce three million cuttings and directly reach over 2,000 farmers with these new varieties, then scale up further.

Photo: N Palmer/CIAT

A farmer tends her cassava field in northern Tanzania.

Cassava grows up: looking ahead to supporting African families

Emmanuel reflects on how the first release of a new disease-resistant high-yielding cassava variety took fundamental science towards tangible realities for the world’s farmers: “It was a great example of a practical application of marker technology for selecting important new traits, and it bodes well for the future as markers get fully integrated into cassava breeding.”

Emmanuel further believes that GCP’s Cassava Research Initiative has given research communities “a framework for international support from other investors to do research and development in modern breeding using genomic resources.” Evaluations have demonstrated that molecular-assisted breeding can slash between three and five years from the timeline of developing better crops.

Photo: M Perret/UN Photo

Women tend to bear most of the burden of cassava cultivation and preparation. Here a Congolese woman pounds cassava leaves – eaten in many regions in addition to cassava roots – prior to cooking a meal for her family.

But, like cassava’s long growth cycle underground, Emmanuel knows there is still a long road to maturity for cassava as a crop for Africa and in research. “Breeding is just playing with genetics, but when you’re done with that, there is still a lot to do in economics and agronomics,” he says. Revolutionising cassava is about releasing improved varieties carefully buttressed by financial incentives and marketing opportunities.

Rural women in particular stand to benefit from improved varieties – they carry most of the responsibility for producing, processing and marketing cassava. So far, Elizabeth explains: “Most women reported an increase in their household income as a result of the improved cassava, but that is still dependent on extra time spent on cassava-related tasks” – a burden which she aims to diminish.

Elizabeth emphasises that future improvement research has to take a bottom-up approach, first talking to female farmers to ensure that improved crops retain characteristics they already value in addition to the new traits. “Rural families are held together by women, so if you are able to change their lot, you can make a real mark,” she says. Morag echoes this hope: “We are just starting to implement this now in Uganda; it’s a more farmer-centric approach to breeding”. The cassava teams emphasise the importance of supporting women in science too; the Tanzanians teams are aiming for a target of 40 percent women in their training courses.

Meet Elizabeth in the podcast below (or on PodOmatic), and be inspired by her passion when it comed to women in agriculture and in science:

 

This direct impact goes much further than individuals, says Chiedozie. “GCP’s daring has enabled many national programmes to be self-empowered, where new avenues are unfolding for enhanced collaboration at the local, national and regional level. We’re seeing a paradigm shift.” And Chiedozie’s objectives reach in a circle back to his compatriots: “Through GCP, I’ve been able to achieve my aims of using the tools of science and technology to make the lives of poor Africans better by providing them with improved crops.”

GCP has been crucial for developing the capacity of countries to keep doing this level of research, says Chiedozie: “The developing-country programmes were never taken seriously,” he says. “But when the GCP opportunity to change this came up we seized it, and now the developing-country programmes have the boldness, capacity and visibility to do this for themselves.”

Emmanuel says his proudest moment was when GCP was looking for Africans to take up leadership roles. “They felt we could change things around and set a precedent to bring people back to the continent,” he says. “They appreciated our values and the need to install African leaders on the ground in Africa rather than in Europe, Asia or the Americas.”

“If you want to work for the people, you have to walk with the people – that’s an African concept. Then when you work with the people, you really understand what they want. When you speak, they know they can trust you.” GCP trusted and trod where others had not before, Chiedozie says.

Elizabeth agrees: “In the past, the assumption was always that ‘Africa can’t do this.’ Now, people see that when given a chance to get around circumstances – as GCP has done for us through the provision of resources, motivation, encouragement and training – Africa can achieve so much!”

More links

Photo: A Hoel/World Bank

Walking into the future: farmer Felicienne Soton in her cassava field in Benin.

Jun 122015
 
Photo: IITA

Growing cowpea pods.

Each year, millions of people in Senegal go hungry for several months, many surviving on no more than one meal a day. Locals call this time soudure – the hungry period. It typically lasts from June through to September, when previous winter and spring cereal supplies are exhausted and people wait anxiously for a bountiful autumn cereal harvest.

During this period, a bowl of fresh green cowpea pods once a day is the best that many people can hope for. Cowpeas are the first summer crop to mature, with some varieties ready to harvest in as little as 60 days.

While cowpeas provide valued food security in Africa, yields remain low. In Senegal, average cowpea yields are 450 kilograms per hectare, a mere 10–30 percent of their potential. This poor productivity is primarily because of losses due to insects and diseases, but is sometimes further compounded by chronic drought.

In 2007, the CGIAR Generation Challenge Programme (GCP) brought together a team of plant breeders and geneticists from Burkina Faso, Mozambique, Nigeria, Senegal and the USA to collaborate on cowpea. Their goal was to breed varieties that would be higher yielding, drought tolerant and resistant to pests and diseases, and so help secure and improve local cowpea production in sub-Saharan African countries.

Photo: IITA

A trader selling cowpea at Bodija market, Ibadan, Nigeria.

Cowpea production – almost all of it comes from Africa

A type of legume originating in West Africa, cowpeas are also known as niébé in francophone Africa and as black-eyed peas in the USA.  They are well adapted to drier, warmer regions and grow well in poor soils. In Africa, they are mostly grown in the hot, drought-prone savannas and very arid sub-Saharan regions, often together with pearl millet and sorghum.

Nutritionally, cowpeas are a major source of dietary protein in many developing countries. Young leaves, unripe pods and peas are used as vegetables, and the mature grain is processed for various snacks and main meal dishes. As a cash crop, both for grain and animal fodder, cowpea is highly valued in sub-Saharan Africa.

Worldwide, an estimated 14.5 million hectares of land is planted with cowpea each year. Global production of dried cowpeas in 2010 was 5.5 million tonnes, 94 percent of which was grown in Africa.

“In Senegal, cowpeas cover more than 200,000 hectares,” says Ndiaga Cissé, cowpea breeder at L’institut sénégalais de recherches agricoles (ISRA; Senegalese Agricultural Research Institute). “This makes it the second most grown legume in Senegal, after groundnuts.”

In 2011, Senegal experienced its third drought within a decade. Low and erratic rainfall led to poor harvests in 2011 and 2012: yields of cereal crops (wheat, barley and maize) fell by 36 percent compared to 2010. Consequently, the hungry period in 2012 started three months earlier than usual, making gap-fillers like cowpea even more important. In fact, cereal production in sub-Saharan African countries has not seen substantial growth over the last two decades – total area, yield and production grew by only 4.3 percent, 1.5 percent and 5.8 percent, respectively.

Climate change is expected to further compound this situation across sub-Saharan Africa. Droughts are forecast to occur more frequently, weakening plants and making them more vulnerable to pests and diseases.

“Improved varieties of cowpeas are urgently needed to narrow the gap between actual and potential yields,” says Ndiaga. “They will not only provide security to farmers in the face of climate change, but will also help with food security and overall livelihoods.”

Photo: IITA

Farmers in Northern Nigeria transport their cowpea harvest.

Mapping the cowpea genome

For over 30 years, Phil Roberts, a professor in the Department of Nematology at the University of California, Riverside (UCR), has been breeding new varieties of cowpea. “UCR has a long history of research in cowpea breeding that goes back to the mid-seventies,” explains Phil. “One of the reasons we were commissioned by GCP in 2007 was to use our experience, particularly in using molecular breeding, to help African cowpea-breeding programmes produce higher yielding cowpeas.”

For seven years, Phil and his team at UCR coordinated the cowpea component of the Tropical Legumes I (TLI) project led by GCP (see box below).  The objective of this work was to advance cowpea breeding by applying modern, molecular breeding techniques, tools and knowledge to develop lines and varieties with drought tolerance and resistance to pests and diseases in the sub-Saharan African countries Burkina Faso, Mozambique, Nigeria and Senegal.

The molecular breeding technology that UCR uses for cowpeas is based on finding genes that help cowpea plants tolerate insects and diseases, identifying markers that can indicate the presence of known genes, and using these to incorporate valuable genes into higher yielding varieties.

“Using molecular breeding techniques is a lot easier and quicker, and certainly less hit-or-miss, than conventional breeding techniques,” says Phil. “We can shorten the time needed to breed better adapted cowpea varieties preferred by farmers and markets.”

Phil explains that the first priority of the project was to map the cowpea genome.

“The map helps us locate the genes that play a role in expressing key traits such as drought tolerance, disease resistance or pest resistance,” says Phil. “Once we know where these genes are, we can use molecular marker tools to identify and help select for the traits. This is a lot quicker than growing the plant and observing if the trait is present or not.”

To use an analogy, think of the plant’s genome as a story: its words are the plant’s genes, and a molecular marker works as a text highlighter. Molecular markers are not precise enough to highlight specific words (genes), but they can highlight sentences (genomic regions) that contain these words (genes), making it easier and quicker to identify which plants have them. Traditionally, breeders have needed to grow plants to maturity under appropriately challenging conditions to see which ones are likely to have useful traits, but by using markers to flag valuable genes they are able to largely skip this step, and test large amounts of material to choose the best parents for their crosses, then check which of the progeny have inherited the gene or genes.

Photo: IITA

Diversity of cowpea seed.

Breeding new varieties faster, using modern techniques

Photo: ICRISAT

A farmer pleased with her cowpea plants.

The main focus of the cowpea component in TLI was to optimise marker-assisted recurrent selection (MARS) and marker-assisted backcrossing (MABC) breeding techniques for sub-Saharan African environments and relevant traits.

MARS identifies regions of the genome that control important traits. In the case of cowpeas, these include drought tolerance and insect resistance. It uses molecular markers to explore more combinations in the plant populations, thus increasing breeding efficiency.

MABC is the simplest form of marker-assisted breeding, in which the goal is to incorporate a major gene from an agronomically inferior source (the donor parent) into an elite cultivar or breeding line (the recurrent parent). Major genes by themselves have a significant effect; it’s therefore easier to find a major gene associated with a desired trait, than having to find and clone several minor genes. The aim is to produce a line made up almost entirely of the recurrent parent genotype, with only the selected major gene from the donor parent.

Using the genome map and molecular markers, the UCR team identified 30 cowpea lines with drought tolerance and pest resistance from 5,000 varieties in its collection, providing the raw material for marker-assisted breeding. “Once we knew which lines had the drought-tolerance and pest-resistance genes we were looking for, we crossed them with high-yielding lines to develop 20 advanced cowpea lines, which our African partners field tested,” says Phil.

The lines underwent final field tests in 2014, and the best-yielding drought-tolerant lines will be used locally in Burkina Faso, Mozambique and Senegal to develop new higher yielding varieties that will be available to growers by 2016.

“While we are still some time off from releasing these varieties, we already feel we are two or three years ahead of where we would be if we were doing things using only conventional breeding methods,” says Ndiaga.

Photo: IITA

A parasitic Striga plant, in a cowpea experimental plot.

The genome map and molecular markers have helped cowpea breeders like Ousmane Boukar, cowpea breeder and Kano Station Representative with the International Institute of Tropical Agriculture (IITA), headquartered in Nigeria, to locate the genes in cowpeas that play a role in expressing desirable traits.

Ousmane, who was GCP’s cowpea Product Delivery Coordinator, says, “We have used this technology to develop advanced breeding lines that are producing higher yields in drier conditions and displaying resistance to several pests and diseases like thrips and Striga. We expect these lines to be available to plant breeders by the end of 2015.

“TLI has had a huge impact in Africa in terms of developing capacity to carry out marker-assisted breeding,” he says. “This form of breeding helps us to breed new varieties in three to five years instead of seven to ten years.”

The Tropical Legumes I project (TLI) was initiated by GCP in 2007 and subsequently incorporated into the Programme’s Legumes Research Initiative (RI). The goal of the RI was to improve the productivity of four legumes – beans, chickpeas, cowpeas and groundnuts – that are important in food security and poverty reduction in developing countries, by providing solutions to overcome drought, poor soils, pests and diseases. TLI was led by GCP and focussed on Africa. Work on cowpea within TLI was coordinated by the University of California, Riverside in the USA. Target-country partners were Institut de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso, Universidade Eduardo Mondlane in Mozambique and Institut Sénégalais de Recherches Agricoles (ISRA; Senegalese Agricultural Research Institute) in Senegal. Other partners were the International Institute of Tropical Agriculture (IITA) and USA’s Feed the Future Innovation Labs for Collaborative Research on Grain Legumes and for Climate-Resilient Cowpea. Tropical Legumes II (TLII) was a sister project to TLI, led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) on behalf of IITA and the International Centre for Tropical Agriculture (CIAT). It focussed on large-scale breeding, seed multiplication and distribution primarily in sub-Saharan Africa and South Asia, thus applying the ‘upstream’ research results from TLI and translating them into breeding materials for the ultimate benefit of resource-poor farmers. Many partners in TLI also worked on projects in TLII.

Burkina Faso – evaluating new lines to improve the country’s economy

Cowpea is an important crop for the people of Burkina Faso. Over 10 million farmers produce on average 800,000 tonnes of cowpeas each year, making the country the third largest producer in the world, behind neighbours Nigeria and Niger.

Much of Burkina Faso’s cowpea crop is consumed domestically, but the government sees potential in increasing productivity for export to Côte d’Ivoire and Ghana in the south. This new venture would improve the country’s gross domestic product (GDP), which is the third lowest in the world.

“The government is very interested in our research to improve cowpea yields and secure them against drought and disease,” says Issa Drabo, lead cowpea breeder with the Institut de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso.

“We’ve been working closely with UCR to evaluate advanced breeding lines that we can use in our own breeding programme. So far we have several promising lines, some of which breeders are using to create varieties for release to farmers – some as early as this year.”

Photo: IITA

Farmers in Burkina Faso discuss cowpea varieties during participatory varietal selection activities.

Outsourcing the molecular work

Issa says his team has mainly been using conventional breeding techniques and outsourcing the molecular breeding work to the UK and USA. “We send leaf samples to the UK to be genotyped by a private company [LGC Genomics], who then forward the data to UCR, who analyse it and tell us which plants contain the desired genes and would be suitable for crossing.”

The whole process takes four to six weeks, from taking the samples to making a decision on which plants to cross.

“This system works well for countries that don’t have the capacity or know-how to do the molecular work,” says Darshna Vyas, a plant genetics specialist with LGC Genomics. “Genotyping has advanced to a point where even larger labs around the world choose to outsource their genotyping work, as it is cheaper and quicker than if they were to equip their lab and do it themselves. We do hundreds of thousands of genotyping samples a day – day in, day out. It’s our business.”

Darshna says LGC Genomics have also developed plant kits, as a result of working more with GCP partners from developing countries. “We would receive plant tissue that was not properly packaged and had become mouldy on the journey. The plant kits help researchers package their tissue correctly. The genotyping data you get from undamaged tissue compared to damaged tissue is a thousand times better.”

Getting the genotyping expertise on the ground

Photo: IITA

A trader bagging cowpeas at Bodija market, Ibadan, Nigeria.

To reduce their African partners’ reliance on UCR, researchers from the university, including Phil, have been training young plant breeders and PhD students from collaborating institutes. Independent of the cowpea project, they have also been joining GCP’s Integrated Breeding Platform (IBP) training events in Africa to help breeders understand the new technologies.

“All this capacity building we do really gets at the issue of leaving expertise on the ground when the project ends,” says Phil. “If these breeders don’t have the expertise to use the modern breeding technologies, then we won’t make much progress.”

GCP Capacity Building Theme Leader and TLI Project Manager Ndeye Ndack Diop has been impressed by UCR’s enthusiasm to build capacity in its partner countries. “Capacity building is a core objective for GCP and the TLI project,” says Ndeye Ndack. “While it is built into almost all GCP projects, UCR have gone over and above what was expected of them and contributed towards building capacity not only among its partner institutions, but in many other African national breeding institutes as well.”

Issa Drabo reports that in 2014 two of his young researchers from Burkina Faso completed their training in GCP’s Integrated Breeding Multiyear Course, conducted by UCR and the IBP team.

One of Issa’s researchers at INERA, Jean-Baptiste de la Salle Tignegré, says the course helped him understand more about the background genetics, statistical analysis and data management involved in the process of molecular breeding. “Because of the course, we are now able to analyse the genotype data from LGC,” he says.

Mozambique – insects and drought are the problem

In 2010, the Universidade Eduardo Mondlane (UEM) joined the cowpea component of TLI, three years after the project started. “We were a little late to the party because we were busy setting up Mozambique’s first cowpea breeding programme, which only began in 2008,” recalls Rogerio Chiulele, a lecturer at the university’s Faculty of Agronomy and Forestry Engineering and lead scientist for cowpea research in Mozambique for TLI.

That year (2008), UEM received a GCP Capacity building à la carte grant to establish a cowpea-breeding programme for addressing some of the constraints limiting cowpea production and productivity, particularly drought, pests and diseases.

As in Burkina Faso and Senegal, in Mozambique cowpeas are an important source of food, for both protein and profit, particularly for the poor. Cowpeas rank as the fourth most cultivated crop in Mozambique, accounting for about nine percent of the total cultivated area, or an estimated four million hectares of smallholder farms.

Photo: IITA

Cowpea plants infested by aphids.

Rogerio says that farmers in his country, just as in other parts of Africa, struggle to reach their full yield potential because of climate, pests and diseases. “Several insect pests – such as aphids, flower thrips, nematodes and pod-sucking pests – can substantially reduce cowpea yield and productivity in Mozambique,” he says.

“Cowpea aphids can cause problems at any time in the growing season, but are most damaging during dry weather when they infest seedlings that are stressed from lack of water. In wetter parts of the country, flower thrips – which feed on floral buds – are the most damaging insect pest.” These insects are also major pests in Burkina Faso and Senegal, along with hairy caterpillar (Amsacta moloneyi), which can completely destroy swaths of cowpea seedlings.

Rogerio says breeding for insect resistance and drought tolerance, using marker-assisted techniques, improves breeders’ chances of increased cowpea productivity. “Productivity is key to increasing rural incomes, and new resources can then be invested in other activities that help boost total family income,” says Rogerio. “These new breeding techniques will help us achieve this quicker.”

Three high-yielding varieties to hit the Mozambique market in 2015

Photo: IITA

Mature cowpea pods ready for harvesting.

Since 2010, Rogerio’s team have quickly caught up to Burkina Faso and Senegal and plan to release three higher yielding new lines with drought tolerance in 2015. One of these lines, CB46, is based on a local cowpea variety crossed with a UCR-sourced American black-eyed pea variety that displays drought tolerance, which potentially has huge market appeal.

“Local varieties fetch, on average, half a US dollar per kilogram, compared to black-eyed pea varieties, whose price is in the region of four to five US dollars,” says Rogerio. “Obviously this is beneficial to the growers, but the benefits for consumers are just as appealing. The peas are better quality and tastier, and they take half as long to cook compared to local varieties.”

All these extra qualities are important to consider in any breeding programme and are a key objective of the Tropical Legume II (TLII) project (see box above). TLII activities, led by ICRISAT, seek to apply products from TLI to make an impact among farmers.

“TLII focuses on translating research outputs from TLI into tangible products, including new varieties,” says Ousmane Boukar, who works closely with Ndiaga, Issa and Rogerio in TLI and TLII.

Building a community of breeders to sustain success

Photo: C Peacock/IITA

Cowpea flower with developing pods.

Part of Ousmane’s GCP role as Product Delivery Coordinator for cowpeas was to lead a network of African cowpea and soybean breeders, and he champions the need for breeders to share information and materials as well as collaborating in other ways so as to sustain their breeding programmes post-GCP.

“To sustain integrated breeding practices post-2014, GCP has established Communities of Practice (CoP) that are discipline- and commodity-oriented,” says Ndeye Ndack. “The ultimate goal is to provide a platform for community problem solving, idea generation and information sharing.”

Ousmane says the core of this community was already alive and well before the CoP. “Ndiaga, Issa and I have over 80 years combined experience working on cowpea. We have continually crossed paths and have even been working together on other non-GCP projects over the past seven years.”

One such project the trio worked together on was to release a new drought-tolerant cowpea breeding line, IT97K-499-35, in Nigeria. “The performance of this variety impressed farmers in Mali, who named it jiffigui, which means ‘hope’,” says Ousmane. “We shared these new lines with our partners in Mali and Niger so they could conduct adaptation trials in their own countries.”

For young breeders like Rogerio, the CoP has provided an opportunity to meet and learn from these older partners. “I’ve really enjoyed our annual project meetings and feeling more a part of the world of cowpea breeding, particularly since we in Mozambique are isolated geographically from larger cowpea-producing countries in West Africa.”

For Phil Roberts, instances where more-established researchers mentor younger researchers in different countries give him hope that all the work UCR has done to install new breeding techniques will pay off. “Young researchers represent the future. If they can establish a foothold in breeding programmes in their national programmes, they can make an impact. Beyond having the know-how, it is vital to have the support of the national programme to develop modern breeding effort in cowpea – or any crop.”

Setting up breeders for the next 20 years

Photo: IITA

Farmer harvesting mature cowpea pods.

In Senegal, Ndiaga is hopeful that the work that the GCP project has accomplished has set up cowpea breeders in his country and others for the next 20 years.

“Both GCP’s and UCR’s commitment to build capacity in developing countries like Senegal cannot be valued less than the new higher yielding, drought-tolerant varieties that we are breeding,” says Ndiaga. “They have provided us with the tools and skills now to continue this research well into the future.

“We are close to releasing several new drought-tolerant and pest- and disease-resistant lines, which is our ultimate goal towards securing Senegal’s food and helping minimise the impact of the hungry period.”

More links

Jun 052015
 
Photo: Bill & Melinda Gates Foundation

Farmer Maria Mtele holds recently harvested orange-fleshed sweetpotatoes in a field in Mwasonge, Tanzania.

Sweetpotato has a long history as a lifesaver. The Japanese used it when typhoons demolished their rice fields. It kept millions from starvation in famine-plagued China in the early 1960s and came to the rescue in Uganda in the 1990s, when a virus ravaged the cassava crop.

In sub-Saharan Africa, sweetpotato is proving crucial in the fight against blindness, disease and premature death among children under five. And, as agriculture becomes more market-oriented across the continent, sweetpotato has some significant advantages: it requires fewer inputs and less labour than other crops such as maize, tolerates marginal growing areas and can mature within four months.

On these fertile grounds, researchers across the globe are not underestimating the importance of sweetpotato as a staple crop.

“Yields achieved by resource-poor farmers in sub-Saharan Africa are typically low,” says Roland Schafleitner of the International Potato Center (CIP), based in Peru.

“Improved and well-adapted sweetpotato varieties with increased tolerance to drought, pests and diseases will have a positive impact on food and income security in sub-Saharan Africa and can significantly contribute to increasing productivity,” he says.

Roland was Principal Investigator of two research projects funded by the CGIAR Generation Challenge Programme (GCP), which developed genetic and genomic resources for breeding improved sweetpotato.

At the outset of the work, Roland says: “Breeding efforts were limited by the crop’s genetic complexity and the lack of information available about its genetic resources.

“It was clear that if we could develop genetic tools and make concerted efforts towards understanding the gene pool of sweetpotato, the breeding potential of the crop would improve.”

Photo: Bill & Melinda Gates Foundation

Farmer Mwanaidi Rhamdani at work in an orange-fleshed sweetpotato field in Mwasonge, Tanzania.

Sub-Saharan Africans getting their vitamin A from sweetpotato

Photo: CIP

Sweetpotato diversity.

Malnutrition does not always mean a simple lack of calories; research suggests that nutrient shortfalls are an even bigger killer. Vitamin A deficiency is a leading cause of blindness, infectious disease and premature death among children under five and pregnant women in sub-Saharan Africa and Asia.

Sweetpotato comes in a wide range of colours. Varieties with dark orange flesh are naturally very rich in the pigment beta-carotene, which the body converts into vitamin A. However, the sweetpotatoes traditionally grown in Africa are pale-fleshed and low in beta-carotene. African consumers were not used to eating colourful sweetpotato – and these orange-fleshed varieties were in any case not well adapted African growing conditions.

Recent years have therefore seen a collaborative effort by researchers across the world to breed orange-fleshed sweetpotato varieties fortified with high levels of beta-carotene, and even enriched with other nutrients, that have also been crossed with local varieties and so are adapted to local conditions and tastes. A crucial part of these efforts has also been to create public awareness and encourage people to grow, eat and buy these new varieties.

Photo: HarvestPlus

Two cheeky young chappies from Mozambique enjoy the sweet taste of orange-fleshed sweetpotato rich in beta-carotene, or pro-vitamin A.

All of this adds to the growing momentum behind sweetpotato. The growing awareness of sweetpotato’s potential nutritional benefits for the poor and food insecure, as well as its value for subsistence farmers as a reliable crop that withstands drought and requires minimal inputs, mean that it is growing in significance.

Photo: HarvestPlus

Orange-fleshed sweetpotato can be used to make a variety of tasty products from doughnuts to chapati.

More than 95% of the world’s sweetpotato crop is grown in developing countries, where it is the fifth most important staple food crop. It is particularly important in many African countries: Madagascar in Southern Africa; Nigeria in West Africa; and those surrounding the Great Lakes in East and Central Africa – Uganda, Malawi, Angola and Mozambique.

According to 2013 figures from the Food and Agriculture Organization of the United Nations, 3.6 million hectares of sweetpotato were harvested in Africa. While the average global yield of sweetpotato per hectare was 14.8 tonnes, across all East African countries in 2013 it was only half this, at 7.1 tonnes per hectare. In West African nations the average yield was even worse, at 3.7 tonnes per hectare.

Farmers are unable to make the most of their crops because the varieties available to them, including traditional varieties (or landraces) have low resistance to viral diseases and insect pests, and poor tolerance to drought. It is therefore crucial that when developing new varieties breeders are able to efficiently incorporate pest and disease resistance and drought tolerance traits.

Sweetpotato, in spite of its name, is only distantly related to the potato. Unlike the potato – which is a tuber, or thickened stem – the sweetpotato is a root. Sweetpotato is not related to the yam either, despite the physical similarity between the two. Sweetpotato can grow at altitudes ranging from sea level to 2,500 metres. It requires fewer inputs and less labour than other crops such as maize, and, in contrast to the potato, it can tolerate heat.

New DNA markers identified for sweetpotato disease

The sweetpotato virus disease (SPVD) is the most serious disease affecting sweetpotato in sub-Saharan Africa. It often causes serious yield losses of up to 80–90 percent.

The disease is the result of joint infection by two viruses: the sweetpotato feathery mottle virus and the sweetpotato chlorotic stunt virus. Of the two, the stunt virus is the more problematic.

Wolfgang Grüneberg, also from CIP, says that, in the years 2006–2008, 52 new DNA markers were developed as part of GCP-funded research to improve marker-assisted selection for resistance to the disease.

“The results,” says Wolfgang, Principal Investigator for the research, “looked promising for developing a large number of orange-fleshed sweetpotatoes with resistance to SPVD.”

Immediately following the development of the markers, two varieties of sweetpotato were developed using a cloned gene, Resistan, known to confer resistance to the virus. The first variety was used to improve an SPVD test system so that the disease could be diagnosed earlier if a crop was affected. The second variety underwent field tests in regions in Uganda that were highly affected by the disease.

Photo: HarvestPlus

Sweetpotato vines and roots.

Mobilising the genetic diversity of sweetpotato for breeding

The goals of the GCP-supported work were to develop a diverse genetic resource base for sweetpotato and stimulate the use of new tools in ongoing breeding programmes.

To help transfer this work from high-end laboratories to resource-poor research labs in developing countries, GCP promoted collaboration across institutions and borders. Researchers from Brazil, Mozambique, Uganda and Uruguay worked together on sweetpotato genetic research projects.

As Roland explains, the basic first steps needed to begin to ‘mobilise’ the genetic diversity of sweetpotato were developing a reference set of varieties and improving genomics tools to work with polyploid crops, i.e. those possessing multiple sets of chromosomes, such as sweetpotato.

GCP-supported researchers in Peru and sub-Saharan Africa defined a reference set of 472 varieties of sweetpotato, carefully selected and honed to represent both the diversity of the crop and its most important agronomical and nutritional traits.

“Based on a reference set, genetic markers can be developed that are associated with important characteristics of the crop and can help breeders to select favourable genotypes,” says Roland.

The gene sequences developed during the Programme are now available as a Sweetpotato Gene Index.

“Based on these sequences,” says Roland, “molecular markers have been designed that can help breeders and gene-bank curators to assess the genetic diversity of their accessions and to perform genetic mapping studies.

“Today, techniques that yield a much larger number of markers for genetic studies and selection are accessible for sweetpotato,” he says.

Photo: Bill & Melinda Gates Foundation

Mwanaidi Rhamdani (left) works with Maria Mtele in an orange-fleshed sweetpotato field in rural Tanzania.

The genetic lifelines reach Africa

Sweetpotato is one of the most important staple crops in Mozambique, ranking in third position after cassava and maize. The areas harvested in Mozambique in 2013 were 1.7 million hectares of maize, 780,000 hectares of cassava and 120,000 hectares of sweetpotato.

Photo: CIP

A child eats cooked orange-fleshed sweetpotato in Uganda.

GCP funded breeders in Mozambique and Uganda to learn how to identify genetic markers that would prove useful for future sweetpotato breeding.

“Our African partners visited us at CIP and helped us complete the work on identifying markers,” recalls Roland. “This provided the opportunity for direct ‘technology transfer’ to breeders in the target region.”

The collaboration had, for the first time, created a critical amount of genetic and genomics resources for sweetpotato. The resulting Sweetpotato Gene Index and the new markers were published in a peer-reviewed journal, BMC Genomics (2010) 11:604.

The new genetic resources are in use at CIP in Peru and in breeding programmes in Burkina Faso, Mozambique, Uganda, Uruguay and the USA for the assessment of the genetic diversity of germplasm collections.

“The markers have been used for diversity analysis, especially at the CIP gene bank, and also in Africa,” says Roland, who says the markers will help future research.

“Such analysis guides germplasm conservation decisions, and diversity studies are a great tool to develop core collections and composite genotype sets – subsets of the whole collection – which allow for more practical screening for specific traits than large collections.”

More links

Photo: P Casier/CGIAR

Kenyan farmer Emily Marigu with her sweetpotatoes.

Mar 062015
 

 

Photo: IITA

A woman holds yam tubers in her hands in a market in West Africa.

Yam production in West Africa is plagued by unsustainable and suboptimal practices. Most farmers continue to grow local varieties that produce poor yields – and also lack aesthetic qualities that appeal to consumers, such as smooth skin and elegant tuber shape.

For a better future and a sustainable food supply, farmers need access to improved yam varieties that can tolerate changes in the climate and environment, as well as resist pests and diseases. Adopting new practices will also help farmers to increase their yields.

Yams play a key role in the food security, income generation and sociocultural life of at least 60 million people in Africa, where more than 95 percent of the world’s yam supply is produced. Worldwide, the tuber vegetable is grown and consumed across the tropics and subtropics of Asia, the Caribbean, the Pacific, and West and Central Africa. Such is the reliance on yams in parts of Africa that communities hold annual festivals to revere and celebrate the crop. The Igbo people in Nigeria hold a ‘new yam harvest’ festival every year at the end of the rainy season in August or September, when the yams are ready for harvest. People in both Nigeria and Ghana hold the ‘new yam eating’ festival, also known as the ‘hoot at hunger’ festival, which symbolises the end of a harvest and the beginning of the next cropping cycle.

Despite the importance of yams in West Africa, breeding efforts for improved varieties have been limited for a number of reasons. One is that local yam cultivars have different names in different communities, making germplasm management and research difficult. Another obstacle is the constraints on yam growth – the plants have a long growth cycle and are highly susceptible to pests and diseases, poor soil, weeds and drought.

Photo: J Haskins/Global Crop Diversity Trust

Dancers celebrate at a new yam festival in Nigeria.

Unique collaborations get yam research rolling

Photo: J Haskins/Global Crop Diversity Trust

A farmer in his yam field in Nigeria.

In 2004, the CGIAR Generation Challenge Programme (GCP) recognised the need to provide resource-poor farmers in West Africa with yam varieties that combine high yields with drought tolerance, pest and disease resistance, and good tuber quality. The Programme was created to advance plant genetics for 21 crops, with a view to improving the resources and capabilities of local breeders in developing countries. Yams were one of the crops that received funding for the first half of the 10-year Programme.

Robert Asiedu, Principal Investigator for GCP’s project assessing the genetic diversity of yams in West Africa, says the Programme improved yam breeding through its unique collaborations.

“The work was brief but the partnership arrangement was useful,” says Robert, who is Director of Research for Development at the International Institute of Tropical Agriculture (IITA), based in Nigeria.

Photo: IITA

A Nigerian farmer displays her healthy yam tubers.

His GCP-funded team included researchers from Centre de coopération internationale en recherche agronomique pour le développement (Agropolis–CIRAD; Agricultural Research for Development) in France, the International Potato Center (CIP) headquartered in Peru, the International Centre for Tropical Agriculture (CIAT) based in Colombia, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) headquartered in India, Chile’s Instituto de Investigaciones Agropecuarias (INIA; Agricultural Research Institute), and the United States Department of Agriculture, plus experts in genome profiling and genetic analysis from Diversity Arrays Technology (DArT) in Australia. DArT provided high-throughput genotyping services that helped to profile yam’s genome.

Andrzej Kilian, DArT’s founder and director, says: “My company had a range of interactions with GCP, and I hope we had some positive impact on the outcomes.”

The researchers used molecular breeding tools – simple sequence repeat markers, or SSRs – to assess the genetic diversity of more than 500 yam accessions from Benin, DR Congo, Côte d’Ivoire, Equatorial Guinea, Gabon, Ghana, Nigeria, Sierra Leone and Togo. The assessment was a huge step forward in expanding the scientific knowledge of yam genetics, and ultimately in identifying suitable material for use in breeding programmes.

Photo: J Haskins/Global Crop Diversity Trust

Walking in yam fields.

IITA research scientist Maria Kolesnikova-Allen, also funded by GCP, says the yam work had two main objectives.

Photo: IITA

Yam vines twist up bamboo staking in a yam field.

“The primary focus of the first projects on yams involving molecular markers was to assess genetic diversity among yams originating from different West African countries and to find relationships between species. This information is important for future breeding and conservation efforts,” she says.

“Also, we were interested in confirming the use of molecular markers for analysis of yams and their potential use in breeding programmes.

“By confirming their usefulness in yam studies, we have offered a robust tool set for further studies on this crop.”

Photo: IITA

A trader displays clean and dried yam tubers at Bodija market, Ibadan, Nigeria.

As a result of the research, she says, “more knowledge and understanding has been achieved in terms of the genetic structure of yam populations in West and Central Africa, providing breeders with important knowledge for accessions selection to be included in breeding programmes.”

The genetic information that has been generated for yams will directly benefit countries in West Africa, according to Maria, “especially with IITA being positioned in the middle of the region and providing expert advice and dissemination of this information to local breeders and farmers.”

As part of her GCP-supported work, Maria supervised West African PhD students Jude Obidiegwu from Nigeria and Emmanuel Otoo from Ghana. Jude, a researcher at the National Root Crops Research Institute (NRCRI) in Nigeria, was responsible for GCP’s work on the genetic diversity of yams. His PhD assessed the genetic diversity of the West African yam collection.

African researchers carry GCP torch forward for yams

Jude is an example of how GCP focussed on fostering a base of experts on the ground in the countries where yams play an important role in people’s lives.

He was a participant in GCP’s Plant Genetic Diversity and Molecular Marker Assisted Breeding workshop held in Pretoria in June 2005. There he learned genomic DNA extraction methods, genetic and quantitative trait locus (QTL) mapping, development of core collections, and scientific proposal writing.

Photo: IITA

Woman counting money from the sales of yams at a yam market in Accra, Ghana.

“Our students at PhD level from Nigeria and Ghana were the main drivers of the projects at laboratory and field experiments level,” says Maria.

“Being involved in the projects allowed them to gain international exposure in their respective research fields and later advance their scientific career, becoming fully fledged yam scientists in their own right.

“If there be any hope of applying advanced genetics and genomics tools to the improvement of yam, it is researchers like Jude who will be the foot soldiers of that work in Africa.”

Photo: J Haskins/Global Crop Diversity Trust

A drummer adds his music to a new yam festival in Nigeria.

Maria feels there are strong foundations for further development of yam’s genetic resources after GCP’s sunset at the end of 2014.

“I would like to hope the future is bright,” she says. “As programmes for reducing hunger and poverty are multiplying and gaining momentum worldwide, I am sure the research on staple crops will be given much-needed financial support.

“I strongly believe in a partnership approach,” she maintains, drawing an analogy between GCP’s focus on crop genetics and the Human Genome Project that involved more than 300 partners collaborating between 1990 and 2003 to identify, map and sequence the human genome.

Robert agrees, forecasting that: “New projects will raise the capacity for yam breeding in West Africa by developing high-yielding and robust varieties of yams preferred by farmers and suited to market demands.”

Photo: IITA

A woman offers yam flour (known as elubo isu) for sale in Bodija market, Ibadan, Nigeria.

Mar 042015
 

 

Photo: IRRI

A woman harvests rice in Ifugao, The Philippines.

Plant geneticist Sigrid Heuer remembers very clearly entering the transgenic greenhouse in Manila to see her postdoctoral student holding up a rice plant with ‘monster’ roots.

“They were enormous,” she recalls. “This is when I knew we had the right gene. It confirmed years of work. That was our eureka moment.

So massive was the effect of that gene that I knew we had the right one.”

This genetic discovery – described in more detail a little later – is one of the shining lights of the 10-year-long CGIAR Generation Challenge Programme (GCP) established in 2004.

GCP-supported researchers aimed high: they wanted to contribute to food security in the developing world by using the latest advances in crop science and plant breeding.

And with the lives of half of the world’s population directly reliant on their own agriculture, there is a lot at stake. Land degradation, salinity, pollution and excessive fertiliser use are just some of the challenges.

Rice is one of the most critical crops worldwide

Amelia Henry, drought physiology group leader at the International Rice Research Institute (IRRI), explains why rice was such a critical crop for GCP research. She says rice is grown in a diverse set of environmental settings, often characterised by severe flooding, poor soils and disease.

Photo: A Barclay/IRRI

Cycling through rice fields in Odisha, India.

In Asia, 40 percent of rice is produced in rainfed systems with little or no water control or protection from floods and droughts – meaning rice plants are usually faced with too much or too little water, and rarely get just enough. In addition, 60 percent (29 million hectares) of the rainfed lowland rice is produced on poor and problem soils, including those that are naturally low in phosphorus.

Phosphorus deficiency and aluminium toxicity are two of the most widespread environmental causes of poor crop productivity in acidic soils, where high acid levels upset the balance of available nutrients. And drought makes these problems even worse.

Phosphorus is essential for growing crops. Its commercial use in fertilisers is due to the need to replace the phosphorus that plants have extracted from the soil as they grow. Soils lacking phosphorus are an especially big problem in Africa, and the continent is a major user of phosphate fertilisers. However, inappropriate use of fertilisers can, ironically, acidify soil further, since excess nitrogen fertiliser decreases soil pH.

Meanwhile, high levels of aluminium in soil cause damage to roots and impair crop growth, reducing their uptake both of nutrients like phosphorus and of water – making plants more vulnerable to drought. Aluminium toxicity is a major limitation on crop production for more than 30 percent of farmland in Southeast Asia and South America and approximately 20 percent in East Asia, sub-Saharan Africa and North America.

Rice is a staple for nearly half of the world’s seven billion people, and global consumption is rising. More than 90 percent of all the rice produced is consumed in Asia, where it is a staple for 2.4 billion people – a majority of the population. Outside Asia, rice consumption continues to rise steadily, with the fastest growth in sub-Saharan Africa, where people are eating 50 percent more rice than they were two decades ago. More than 90 percent of the world’s rice is produced by farmers in six countries: China, India, Indonesia, Bangladesh, Vietnam and Japan. China and India account for nearly half of that, with an output of more than 700 million tonnes.

The challenge today is to tap into the genetic codes of key crops such as rice and wheat to feed a growing global population. Science plays a crucial role in identifying genes for traits that help plants tolerate more difficult environmental conditions, and producing crop varieties that contain these genes.

Plant biologists are already developing new rice lines that produce higher yields in the face of reduced water, increasingly scant fertiliser as costs rise, and unproductive soils. However, ‘super’ crops are needed that can combine these qualities and withstand climate changes such as increasing temperatures and reduced rainfall in a century when the world’s population is estimated to reach nearly 10 billion people by 2050.

Bringing the best scientific minds to improve rice varieties

Ambitious in concept, the GCP research focussed on bringing together experts to work on these critical problems of rice production for some of the world’s poorest farmers.

The programme was rolled out in two phases that sought to explore the genetic diversity of key crops and use the most important genes for valuable traits, such as Sigrid’s discovery made in a rice variety that is tolerant of phosphorus-poor soils. Each phase involved dedicated teams in partner countries.

GCP: a two-act tale Phase I (2004–08) involved ‘discovery’ projects for 21 crops: beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum, wheat, bananas (and plantains), barley, coconuts, finger millet, foxtail millet, lentils, pearl millet, pigeonpeas, potatoes, soya beans, sweetpotatoes and yams. Phase II (2009–14) focussed on nine of these 21: beans, cassava, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat.

GCP Principal Investigator Hei Leung, from IRRI, says GCP is unique, one of kind: “I love it.” He says GCP has enabled rice researchers and breeders to embrace cutting-edge science through partnerships focussed on improving crop yields in areas previously deemed unproductive.

Hei says GCP wanted to target research during its second phase on those crops that most poor people depend upon. “We wanted to have a programme that is what we call ‘pro-poor’, meaning the majority of the world’s people depends on those crops,” he says.

Rice is the ‘chosen one’ of GCP’s cereal crop research and development, with the biggest slice of GCP’s research activities dedicated to this, the most widely consumed staple food.

It is crucial to increase rice supplies by applying research and development such as that carried out by GCP researchers over the past 10 years, Hei says.

For more on the relationship between GCP and IRRI – and an extra sprinkling of salt on your rice (fields) – see our Sunset Story ‘Rice research reaps a rich harvest of products, people and partners’.

Relying on rice’s small genome in the hunt for drought-tolerance genes

Researchers had been trying to map the genomes of key cereal crops for over two decades. Rice’s genome was mapped in 2004, just as GCP started.

Rice has a relatively small genome, one-sixth the size of the maize genome and 40 times smaller than the wheat genome. This makes it a useful ‘model’ crop for researchers to compare with other crops.

“People like to compare with rice because wheat and maize have very big genomes, and they don’t have the resources,” explains Hei.

After the rice genome had been sequenced, the next step was to focus down to a more detailed level: the individual genes that give rice plants traits such as drought tolerance. Identifying useful genes, and markers that act as genetic ‘tags’ to point them out, gives scientists an efficient way to choose which plants to use in breeding.

One of GCP’s Principal Investigators for rice was Marie-Noëlle Ndjiondjop, a senior molecular scientist with the Africa Rice Center.

“Rice is becoming a very important crop in Africa,” she says. “Production has been reduced by a lot of constraints, and drought is one of the most important constraints that we face in Africa.”

Meet Marie-Noëlle below (or on YouTube), in our series of Q&A videos on rice research in Africa.

 

Marie-Noëlle’s team recognised that drought tolerance was likely to be a complex trait in rice, involving many genes, due to the mix of physiological, genetic and environmental components that affect how well a plant can tolerate drought conditions. To help discover the rice varieties likely to have improved drought tolerance, Marie-Noëlle’s team used an innovative approach known as bi-parental marker-assisted recurrent selection (MARS).

“With such a complex trait, you really need to have all the tools and infrastructure necessary; through GCP we were able to buy the necessary equipment and put in the infrastructure needed to find and test the drought trait in rice lines.

“By using the MARS approach we identified the genetic regions associated with drought and are moving towards developing new rice lines that the African breeder and farmer will be using in the next decade to grow crops that are better able to withstand drought conditions.”

Likewise, Amelia Henry’s IRRI team also developed drought-tolerant lines, particularly for drought-prone areas of South Asia. She says many of the promising deep-rooted or generally drought-tolerant varieties identified in the early decades after IRRI’s foundation in 1960 are still used today as ‘drought donors’.

“Since the strength of our project was the compilation of results from many different sites, this work couldn’t have been done without the GCP partners,” she says. “They taught me a lot about how rice grows in different countries and what problems rice farmers face.”

Hei agrees that GCP partnerships have been crucial, including in the successful breeding of rice with drought tolerance: “They’re getting a 1.5-tonne rice yield advantage under water stress. I mean, that’s unheard of! This is a crop that needs water.”

Photo: IRRI

A rice farmer in Rwanda.

But the researchers could not rest with just one of rice’s problems solved.

Hei says GCP’s initial focus on drought was a good one but then, “I remember saying, ‘We cannot just go for drought. Rice, like all crops, needs packages of traits’.”

He knows that drought is just one problem facing rice farmers, noting “this broadened our research portfolio to include seeking to breed rice varieties with traits of tolerance to aluminium toxicity, salt and poor soils.”

The scope widens: phosphorus-hungry rice and a huge success

Sigrid Heuer was in The Philippines working for IRRI when she became involved in the ground-breaking phosphorus-uptake project for rice.

She took over the project being headed by Matthias Wissuwa. Much earlier, Matthias had noted that Kasalath – a traditional northern Indian rice variety that grew successfully in low-phosphorus soil – must contain advantageous genes. His postdoctoral supervisor, Noriharu Ae, thought that longer roots were likely to be the secret to some rice varieties being able to tolerate phosphorus-deficient soils.

Matthias, now a senior scientist in the Crop, Livestock and Environment Division at the Japan International Research Center for Agricultural Sciences (JIRCAS), says that for a long time he was not sure if it was just long roots: “It was a real chicken-and-egg scenario – does strong phosphorus uptake spur root growth, or is it the other way around?”

Photo: IRRI

Screening for phosphorus-efficient rice, able to make the best of low levels of available phosphorus, on an IRRI experimental plot in The Philippines. Some types of rice have visibly done much better than others.

Sigrid Heuer used her background in molecular breeding to take up the challenge with GCP to find the genes responsible for the Kasalath variety’s long roots.

“I spent years looking for the gene,” Sigrid says. “It was like trying to find a needle in a haystack; the genomic region where the gene is located is very complex.

“We had little biogenomics support at the time and I had three jobs and two kids; I was spending all my nights trying to find this gene.”

Photo: IRRI

Sigrid Heuer in the field at IRRI.

But one day, Sigrid’s postdoctoral student Rico Gamuyao excitedly called her downstairs to the transgenic greenhouses. “Rico had used transgenic plants to see whether this gene had any effect. He was digging out plants from experimental pods.”

Sigrid says that moment in the Manila labs was the turning point for the project’s researchers.

Matthias’ team had previously identified a genomic region, or locus, named Pup1 (‘phosphorus uptake 1’) that was linked to phosphorus uptake in lines of traditional rice growing in poor soils. However, its functional mechanism remained elusive until the breakthrough GCP-funded project sequenced the locus, showing the presence of a Pup1-specific protein kinase gene, which was named PSTOL1 (‘phosphorus starvation tolerance 1’). The discovery was reported in the prestigious scientific journal Nature on 23 August 2012 and picked up by media around the world.

The gene instructs the plant to grow larger and longer roots, increasing its surface area – which Sigrid compares to having a bigger sponge to absorb more water and nutrients in the soil.

“Plants growing longer roots have more uptake of phosphorus – and PSTOL1 is responsible for this.

“GCP was always there, supporting us and giving us confidence, even when we weren’t sure we were going to succeed,” she recalls. “They really wanted us to succeed, so, financially and from a motivational point of view, this gave us more enthusiasm.”

She adds, jokingly, “With so many people having expectations about the project, it was better not to disappoint.”

For some insight straight from the source, listen to Matthias in our podcosts below. In these two bitesized chunks of wisdom he discusses the importance of phosphorus deficiency and of incorporating PSTOL1 into national breeding programmes; his work in Africa and the possibility of uncovering an African ‘Pup2; what the PSTOL1 discovery has meant for him; and the essential contribution of international partnerships and GCP’s support.


Photo: IRRI

Members of the IRRI PSTOL1, phosphorus uptake research team chat in the field in 2012. From left to right they are are: Sigrid Heuer, Cheryl Dalid, Rico Gamuyao, Matthias Wissuwa and Joong Hyoun Chin.

Phosphorus-uptake gene not all it seemed – an imposter?

But PSTOL1 was definitely not what it seemed. “It was identified under phosphorus-deficient conditions and the original screen was set up for that,” says Sigrid.

Researchers eventually discovered that Pup1 and the PSTOL1 gene within it were not really all about phosphorus at all: “It turns out it is actually a root-growth gene, which just happens to enhance uptake of phosphorus and other nutrients such as nitrogen and potassium.

“The result is big root growth and maintenance of that growth under stress. If you have improved root growth, there is more access to soil resources, as a plant can explore more soil area with more root fingers.”

Her team showed that overexpression of PSTOL1 gene significantly improves grain yield in varieties growing in phosphorus-deficient soil – by up to 60 percent compared to rice varieties that did not have the gene.

In field tests in Indonesia and The Philippines, rice with the PSTOL1 gene produced about 20 percent more grain than rice without the gene. This is important in countries where rice is grown in poor soils.

Photo: T Saputro/CIFOR

A farmer harvests rice in South Sulawesi, Indonesia.

Sigrid, now based in Adelaide at the Australian Centre for Plant Functional Genomics, says the introduction of the new gene into locally adapted rice varieties in different locations across Asia and Africa is expected to boost productivity under low-phosphorus conditions.

“The ultimate measure for these kinds of projects is whether a gene works in different environments. I think we have a lot of evidence that says it does,” she says.

The discovery of PSTOL1 promises to improve the food security of rice farmers on phosphorus-deficient land though assisting them to grow more rice and earn more.

Titbits of further research successes: aluminium tolerance and MAGIC genes

Drought, low-phosphorus soils, aluminium toxicity, diseases, acid soils, climate change… the list seems never-ending for challenges to growing rice. Apart from the successes with drought and phosphorus that GCP scientists achieved, there was to be much more in the works from other GCP researchers.

During GCP Phase I, a team led by Leon Kochian of Cornell University, USA, with colleagues at the Brazilian Corporation of Agricultural Research (EMBRAPA), JIRCAS and Moi University, Kenya, successfully identified and cloned a major sorghum aluminium-tolerance gene.

In Phase II, they worked towards breeding aluminium-tolerant sorghum lines for sub-Saharan Africa, as well as applying what they learnt to discover similar genes in rice and maize.

Hei Leung says GCP leaves a lasting legacy in the development of multiparent advanced generation intercross (MAGIC) populations. These help breeders to identify valuable genes, and from among the populations they can also select lines to use in breeding that have favourable traits, such as being tolerant to environmental stresses, having an ability to grow well in poor soils or being able to produce better quality grain.

“MAGIC populations will leave behind a very good resource towards improving different crop species,” says Hei. “I’m sure that they will expand on their own.”

GCP funded the development of four different MAGIC populations for rice, including both indica and japonica types. And the idea of developing MAGIC populations has spread to other crops, including chickpeas, cowpeas and sorghum.

For more on MAGIC see our Sunset Story ‘Rice research reaps a rich harvest of products, people and partners’.

Photo: IRRI

A farmer harvests rice in Nepal.

Meeting the challenges and delivering outcomes to farmers

But with success come the frustrations of getting there, according to Nourollah Ahmadi, GCP Product Delivery Coordinator for rice across Africa. “This is because things are not always going as well as you want.”

Nourollah, from Centre de coopération internationale en recherche agronomique pour le développement (Agropolis–CIRAD; Agricultural Research for Development), says sometimes he felt overwhelmed coordinating GCP’s rice projects because “the challenges were perhaps too big.”

Project Delivery Coordinators monitor projects first-hand, conducting on-site visits, advising project leaders and partners and helping them implement delivery plans.

“One of the problems was the overall level of basic education of people who were involved in the project,” Nourollah says.

Photo: L Hartless/ACDI VOCA/USAID

Rice cultivation in Mali is on the rise.

His work with GCP has opened up new prospects for some of the poorest farmers in the world: “For five years, I have been coordinating one of the rice initiatives implemented by the Africa Rice Center and involving three African countries.” These are Burkina Faso, Mali and Nigeria.

He says GCP has brought much-needed expertise and technical skills to countries which can now use genetic insights to produce improved crops tolerant of drought conditions and poor soils and resistant to diseases. Using new molecular-breeding techniques has provided a more effective way to move forward, still firmly focussed on helping the world’s poorest farmers achieve food security.

“We don’t change direction, we change tools – sometimes you have a bicycle, sometimes you have a car,” Nourollah says.

Hei agrees there have been challenges: “It’s been a bumpy road to get to this point. But the whole concept of getting all the national partners doing genetic resource characterisation is a very good one.

Right now they are enabled; they are not scared about the technology. They can apply it.”

Sigrid says applied research is judged on two scales: “One is the publications and science you’re doing. The other is whether the work has any impact in the field, whether it works in the field. Bringing these two together is sometimes a challenge.”

GCP has managed to meet both challenges. New crop varieties have been released to farmers, and more than 450 scientifically reviewed papers have been published since 2004.

Building on the rice success story and leaving a lasting legacy

The work that GCP-supported researchers have done for rice is also being used in other crops. For example, researchers used comparative genomics to determine if genes the same as or similar to those found in rice are present and operating in the same manner in sorghum and maize.

The GCP team found sorghum and maize varieties that contained genes, similar to rice’s PSTOL1, that also confer tolerance of phosphorus-deficient soil with an enhanced root system. They were then able to develop markers to help breeders in Brazil and Africa identify phosphorus-efficient lines.

Making the most of comparative genomics Over the last 20 years, genetic researchers all over the world have been mapping the genomes of various crops. A genome is the total of all genes that make up the genetic code of an individual. Genome maps are now being used by geneticists and plant breeders to identify similarities and differences between the genes of different crop species. This process is termed comparative genomics and was an important tool for GCP during its second phase (2008–2014).

The knowledge that GCP-supported rice researchers have generated is shared through communities of practice, through websites, publications, research meetings and the Integrated Breeding Platform.

As Amelia Henry notes, GCP’s achievements will be defined by “the spirit of dedication to openness with research data, results and germplasm and giving credit and support to partners in developing countries.” The work in rice in many ways exemplifies GCP’s collaborative approach, commitment to capacity building and deeply held belief that together we can go so much further in helping farmers.

Unlocking genetic diversity in crops for the resource-poor was at the heart of GCP’s mission, which in 2003 promised ‘a new, unique public platform for accessing and developing new genetic resources using new molecular technologies and traditional means’.

Certainly for poor rice farmers in Asia and Africa, the work that GCP has supported in applying the latest molecular-breeding techniques will lead to rice varieties that will help them produce better crops on poor soils in a changing climate.

Photo: A Erlangga/CIFOR

Rice farmers in Indonesia.

More links