Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Oct 132015
 

 

Photo: N Palmer/CIAT

The vibrant colours of a cassava leaf.

Little did some of Ghana’s crop researchers know back in 2007 that they would be cultivating not just their plants but also themselves over the following seven years.

“When you see one person being trained and then another person being trained, it doesn’t mean much. But when you put all the numbers together and they see themselves as a force, as a team, I think that’s where new strength lies for our African researchers,” reflects Elizabeth Parkes on the impacts of the CGIAR Generation Challenge Programme (GCP).

Elizabeth is a cassava breeder in Ghana. She works for the Crops Research Institute (CRI) of Ghana’s Council for Scientific and Industrial Research (CSIR) and is currently on a leave of absence working at the International Institute of Tropical Agriculture (IITA).

“Wherever I go, whatever opportunity I have, I refer back to GCP and its capacity-building work. You see, it’s good to release new plant varieties, but it’s also good to release people,” she says.

The internationally funded GCP set out to enhance the local plant-breeding capabilities of people like Elizabeth, and so help developing nations meet ever-growing demands for food in the face of climate change and worsening drought conditions, the threat of crop disease, and other pressures.

Photo: N Palmer/CIAT

Scientists at the Crops Research Institute (CRI) work to improve crop production in Ghana and so ensure national food security and decent livelihoods for people like this Ghanaian cassava farmer.

This has meant empowering scientists with cutting-edge tools and knowledge, as well as overcoming some surprisingly down-to-earth obstacles.

“One thing that really energises me,” enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work and being given the chance to do the how.”

Hannibal, under his GCP remit, was asked to visit the research sites of GCP-funded projects at research centres and stations across Africa, to identify those where effective research might be hindered by significant gaps in three fundamental areas: infrastructure, equipment and support services. He selected 19 target research sites, in Burkina Faso, Ethiopia, Ghana, Kenya, Mali, Niger, Nigeria and Tanzania. Two of these were in Ghana, namely the CRI research sites at Kumasi and Tamale.

The mission of CRI is to ensure high and sustainable crop productivity and food security in Ghana through the development and dissemination of environmentally sound technologies. Its research areas are broad and include maize, rice, cowpeas, soybeans, groundnuts, cassava, yams, cocoyams, sweetpotatoes, plantains and bananas.

In developing countries like Ghana that the obstacles to achieving research objectives are often quite mundane in nature: a faulty weather station, a lack of irrigation systems, or fields ravaged by weeds or drainage problems and in dire need of rehabilitation. Yet such factors compromise brilliant research.

Even a simple lack of fencing commonly results not only in equipment being stolen, but also in precious experimental crops being stomped on by roaming cattle and wild animals such as boars, monkeys, hippopotamuses and hyenas; this also poses a serious threat to the safety of field staff.

“The real challenge lies not in the science, but rather in the real nuts and bolts of getting the work done in local field conditions,” Hannibal explains.

He says: “If GCP had not invested in research support infrastructure and services, then their investment in research would have been in vain. Tools and services must be in place as and when needed, and in good working order. Tractors must be able to plough when they should plough.”

Photo: N Palmer/CIAT

Cassava chips on sale in a Ghanaian market.

Ghana gains a new centre of excellence

CRI Ghana quote 1Elizabeth is one of more than 10 researchers from Ghana who gained their PhDs via GCP-funded research projects. They were given the opportunity to travel to international research laboratories to learn the latest research methods, train in genotyping and establish contacts with leading scientific minds.

“They [GCP] have made us attractive for others to collaborate with,” says Elizabeth.

“GCP gave you the keys to solving your own problems; it put structures in place so that knowledge learnt abroad could be transferred and applied at home.

“Before GCP we really struggled, but now everybody wants to have training in Ghana. Everybody wants to have something to do with us, and I will always say thank you to GCP for that, for making us attractive as researchers,” Elizabeth says.

At the outset of the Programme, Elizabeth was learning how to breed new cassava varieties suitable for African soils. She worked with scientists from IITA in Nigeria to use genetic resources (germplasm) from South America, where cassava originates, to integrate the CMD2 gene into local germplasm using molecular breeding. CMD2 gives cassava resistance to the devastating cassava mosaic disease, which slowly shrivels and yellows leaves and roots, destroying crop yields.

Photo: IITA

Elizabeth Parkes poses with a sturdy and nutritious harvest of cassava roots.

Cassava is a lifeline for African people, and is a particularly important staple food for poorer farmers. More cassava is produced in Africa than any other crop, according to 2012 figures from the Food and Agriculture Organization of the United Nations. It is grown by nearly every farming family in sub-Saharan Africa, supplying about a third of people’s daily energy intake in the region. This makes cassava mosaic disease a potential disaster, and makes effectively breeding improved varieties an activity with real impact.

“We started out doing low-cost marker-assisted selection, for which we had some grants. Someway, somehow, the government got interested and brought in more resources. So together we started a small biotech lab. Now this lab has become the Centre of Excellence for West African productivity,” says Elizabeth.

“I have attended three GCP Annual Research Meetings, and I have won awards for my posters. This greatly boosted my confidence,” says Elizabeth. She also continues to be an active member of the Cassava Community of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – which facilitates and supports the integration of marker-assisted selection into cassava breeding. All this has accelerated Elizabeth’s quest to produce and disseminate farmer-preferred cassava varieties that are resistant to pests and diseases.

“We are all forever grateful to GCP and its funders. GCP has had a huge impact on research in Ghana, especially for cassava, rice, maize and yam. All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

Capacity building à la carte a real ‘life changer’

For Allen Oppong, a maize pathologist at CRI, GCP was a life changer too: “Indeed, I am very grateful to GCP for making me what I am today.”

CRI Ghana quote 2Allen’s first experience of GCP was in 2007, when he won a Capacity building à la carte grant for research into characterising locally adapted maize varieties. During the project he travelled to international research meetings and received training in marker-assisted selection in advanced laboratories.

Infrastructure improvements funded by GCP also came at a critical time for Allen. There was a drought, which, without the irrigation systems provided through the Programme, would have meant a much longer research process.

Even without drought, these kinds of improvements can dramatically speed up breeding, as Hannibal explains: “By providing glasshouses or the capacity to irrigate in the dry season, we are enabling breeders to accelerate their breeding cycles, so that they can work all year round rather than having to wait until the rain comes.”

“Through the support of GCP,” Allen recalls, “I was able to characterise maize varieties found in Ghana using the bulk fingerprinting technique. This work has been published and I think it’s useful information for maize breeding in Ghana – and possibly other parts of the world.”

One of the biggest challenges that Allen experienced during his GCP work was getting farmers to try the new varieties that are being developed.

“Most people don’t like change. The new varieties are higher yielding, disease resistant, nutritious – all good qualities. But the challenge is demonstrating to farmers that these materials are better than what they have.

Photo: N Palmer/CIAT

A Ghanaian farmer holds a just-harvested maize ear.

“You can have very good material that has all these attributes, but if the farmer doesn’t have access to it, then how can he know the attributes that you are talking about? How can he see it when it is in your research station?”

Ghanaian farmers generally select maize varieties for their adaptation to specific local environments. But as Allen explains, average maize yields in Ghana, at 1–1.5 tonnes per hectare, are well below the global average of 5.2 tonnes per hectare.

Allen is looking forward optimistically to this next stage. “We have the capacity to more than double what we are producing now. The possibility is there, as long as farmers adopt the good materials.”

A ‘kick-start’ for plant science and for people

The catalytic effect of international funding programmes like GCP on small research laboratories in developing countries is often underestimated.

“We got GCP support to kick-start molecular biology research activities,” says Marian Quain, a senior research scientist at CRI. “It provided us with laboratory chemicals, reagent and equipment. My lab also received funding under the Genotyping Support Service initiative to characterise hundreds of sweetpotato, yam and cassava accessions.

“This support from GCP contributed immensely to transforming the lab.”

Ruth Prempeh – CRI researcher who was able to achieve her PhD with GCP support – hard at work collecting data in the field.

Ruth Prempeh – CRI researcher who was able to achieve her PhD with GCP support – hard at work collecting data in the field.

Funding injections can kick-start careers for young scientists too. In 2009, Ruth Prempeh received funding for her PhD, Genetic analysis of postharvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots, which was completed in 2013.

“From my thesis, l have prepared three manuscripts for publication. I have also had the opportunity to attend the three-year Integrated Breeding Multiyear Course, during which l acquired knowledge and skills in data analysis, interpretation and management and also in using modern technologies for crop improvement,” says Ruth.

“This has been very useful and has really had an impact on my career, making me what l am today. With this, l know l have a great future and I believe l will achieve great things. I am really proud to have been associated with GCP and very grateful for the opportunity.”

More links

Photo: William Haun/Flickr (Creative Commons)

Cassava flour on sale in Ghana.

Oct 012015
 

 

Photo: C. Schubert/CCAFS

A farmer from Dodoma, Tanzania, an area where climate change is causing increasing heat and drought. Groundnut is an important crop for local famers, forming the basis of their livelihood together with maize and livestock.

If you don’t live with poor people, then your science is of no use to poor people. This is the very clear sentiment of Omari Mponda, one of Tanzania’s top groundnut researchers.

“Sometimes people do rocket science. But that’s not going to help the poor,” says Omari. “Scientists in labs are very good at molecular markers, but markers by themselves will not address the productivity on the ground. You cannot remove poverty through that alone.”

Omari is the Zonal Research Coordinator and plant breeder at Tanzania’s Agricultural Research Institute at Naliendele (ARI–Naliendele).

The passion and dedication of Omari and his colleagues at this East African research centre were the reason why, between 2008 and 2014, the CGIAR Generation Challenge Programme (GCP) provided funding for legumes research at ARI–Naliendele that especially targeted drought, as part of the Tropical Legumes I project. This project supplied national institutes across Africa, Asia and Latin America with training and infrastructure improvements that enabled local researchers to do more advanced plant science that could make a real difference to farmers.

Researchers like Omari, who are working on the ground in developing countries, are a crucial part of the global quest to develop solutions for future food security and improved livelihoods in these countries.

GCP set out to enhance the plant-breeding skills and capacity of researchers in developing nations, such as Tanzania, so that they can develop their own crop varieties that will cope with increasingly extreme drought conditions.

Photo: C Schubert/CCAFS

A farmer in dryland Tanzania shows off his groundnut crop.

“One thing that really energises me,” enthuses GCP Consultant Hannibal Muhtar, “is seeing people understand why they need to do the work and being given the chance to do the how.”

Hannibal, under his GCP remit, was asked to visit the research sites of GCP-funded projects at research centres and stations across Africa, to identify those where effective research might be hindered by significant gaps in three fundamental areas: infrastructure, equipment and support services. He selected 19 target research sites – in Burkina Faso, Ethiopia, Ghana, Kenya, Mali, Niger, Nigeria and Tanzania.

Photo: AgCommons

Hannibal Muhtar (left) and Omari Mponda at ARI–Naliendele.

Two of the locations chosen for some practical empowerment were in Tanzania, namely the ARI research sites at Naliendele and Mtwara, where simple infrastructure improvements like irrigation tubing and portable weather stations have made a surprising difference to the capacity of local researchers.

In developing countries like Tanzania, the obstacles to achieving research objectives are often quite mundane in nature: a faulty weather station, the lack of irrigation systems, or fields ravaged by weeds and in dire need of rehabilitation. Yet such factors compromise brilliant research.

Even a simple lack of fencing commonly results not only in equipment being stolen, but also in precious experimental crops being stomped on by roaming cattle and wild animals such as boars, monkeys, hippopotamuses and hyenas; this also poses a serious threat to the safety of field staff.

“The real challenge lies not in the science, but rather in the real nuts and bolts of getting the work done in local field conditions,” Hannibal explains.

He says: “If GCP had not invested in research support infrastructure and services, then their investment in research would have been in vain. Tools and services must be in place as and when needed, and in good working order. Tractors must be able to plough when they should plough.”

Bridging the gap between the lab and farmers

Since 2008, researchers at ARI–Naliendele in Tanzania have been working together with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to identify suitable groundnut breeding materials to help the country’s farmers improve crop yields. Currently, yields are at less than one-third of their potential.

“We are bridging the big science to the poor people, to see the real issues we should be addressing. You can have a very good resistant variety, but maybe that variety is not liked by farmers,” Omari says.

He recalls a case where one farmer who helped with variety selection for international research had identified a groundnut variety that was resistant to disease, but the shells were too difficult to crack.

“So that variety won’t help the poor, because he [the farmer] is not able to open the shell. So the breeder had to rethink, what trait could loosen, or make it easier to shell?” recounts Omari.

Photo: N Palmer/CIAT

Shelled groundnuts on sale in Ghana.

The mission of the 10-year GCP was to use genetic diversity and advanced plant science to improve crops in developing countries. More than 200 partners were involved in the programme, including members of the international CGIAR group plus academia and regional and national research programmes.

National institutes like Tanzania’s ARI–Naliendele, established in 1970, are essential linchpins between advanced research centres in developed countries and poor farmers around the world facing the day-to-day realities of climate change and plant pests and diseases.

“If each organisation works in isolation, they will spend a lot of money developing new varieties but nothing will change on the ground. So in actually working together through programmes like the GCP, we can see some change happening,” says Omari.

Through the GCP project, Tanzania’s groundnut researchers received 300 reference-set lines from ICRISAT, which were then phenotyped over three years (2008–2010) for both drought tolerance and disease resistance in order to select the most useful lines under local conditions. To help with this process, Tanzanian scientists and technicians travelled to ICRISAT headquarters in India, where they were trained in phenotyping: that is, how to identify and measure observable characteristics – in this case, traits relating to the plants’ abilities to cope with drought and disease.

After the researchers identified the best varieties, these were provided to participating farmers so they could trial them in their fields for selection in 2011–2012. Five new varieties have since been released to Tanzanian farmers based on this collaboration between ARI and ICRISAT.

Photo: A Masciarelli/FAO

A young groundnut plant.

Things are speeding up in Tanzania

For ARI–Naliendele, the laboratory and field infrastructure provided by GCP funding has helped accelerate the work of local researchers and breeders. It has been transformative for Tanzanian scientists, according to Omari.

“For example, irrigation is very costly, but with the GCP support for an irrigation system, we can fast track our work – we can come up with new varieties in a much shorter period. That is something that will change our lives,” says Omari.

“Groundnut has a very low multiplication ratio, so if you plant one kilogram, you will get only 10 kilograms next year,” he explains. “Ten kilograms in 12 months is not enough. With irrigation, it means that we can have at least two or three crops within a season. Some of the varieties we are developing can be fast tracked to the end users. The speed of getting varieties from the research to the farmers has increased by maybe three times.”

Photo: D Brazier/IWMI

Washing harvested groundnuts, Zimbabwe.

GCP also funded computers, measuring scales, laboratory equipment and a portable weather station, which all help to assure good, reliable information on phenotyping.

Scientists too have become quicker and better at their work from having more advanced skills, according to Omari: “We now have more competent groundnut breeders in Tanzania.

“Initially, we depended on germplasm being brought over by ICRISAT and somebody selecting varieties for us. But they have been training us to do our own crosses, so we can now decide what grows in our breeding programme,” he says.

“For us, it is a big achievement to be able to do national crosses. We are advancing toward being a functional breeding programme in Tanzania.

“These gains made are not only sustainable, but also give us independence and autonomy to operate. We developing-country scientists are used to conventional breeding, but we now see the value and the need for adjusting ourselves to understand the use of molecular markers in groundnut breeding.”

Tanzania’s new zest for advanced plant breeding

Photo: N Palmer/CIAT

A farmer at work in her cassava field in northern Tanzania.

According to cassava breeder Geoffrey Mkamilo, a Principal Agricultural Research Officer at ARI: “There are some things that you just cannot do by conventional breeding.”

Usually researchers looking to breed better drought-tolerant and disease- and pest-resistant crops would use conventional breeding methods. This means researchers would be trying to pick out resilient plants by phenotyping alone, looking at how they are growing in the field under different conditions, which can take considerable time to deliver results – especially for crops that are slow to mature, like cassava.

Molecular breeding, on the other hand, involves using molecular markers to make the breeding process faster and more effective. These markers are genetic sequences known to be linked to useful genes that confer plant traits such as drought tolerance or disease resistance. Breeders can easily test small amounts of plant material for these markers, so they act like genetic ‘tags’, flagging up whether or not particular genes are present.

This knowledge helps breeders to efficiently select the best parent plants to use in their crosses, and accurately identify which of the progeny have inherited the gene or genes in question without having to grow them all to maturity. Phenotyping is still needed in discovering markers, linking genetic information with physical traits, and in testing the performance of materials in the field, but overall the time taken produce a new variety can be reduced by years.

“Before I started working with GCP, molecular breeding for me was very, very difficult… I wasn’t trained to become a molecular breeder. Now, with GCP, I can speak the same language,” Geoffrey says.

Photo: Kanju/IITA

A farmer carefully packs harvested cassava tubers for transportation to the market in Bungu, Tanzania.

Via GCP, Geoffrey had the opportunity to work with scientists based in Colombia at the International Center for Tropical Agriculture (CIAT) and in Nigeria at the International Institute of Tropical Agriculture (IITA), among other experts in research institutes across the world.

The team first began to release new cassava varieties developed using marker-assisted selection in 2011, with four varieties for two different Tanzanian environments. These varieties had manifold benefits: dual resistance to cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), and productivity potential of up to double the yield of existing commercial varieties.

The research continues to produce ever better cassava varieties, and in this endeavour Geoffrey cannot overemphasise the power of integrating conventional breeding practices with molecular breeding.

“I have received so many phone calls from farmers; they even call in the night. They say, ‘Geoffrey, we have heard that you have very good materials. Where do we get these materials?’ So many, many farmers are calling,” says Geoffrey. “Many, many organisations – even NGOs, they also call. They want these materials. And even the private sector calls. GCP has contributed tremendously to this.”

More links

Jun 222015
 
Photo: Joseph Hill/Flickr (Creative Commons)

Groundnut plants growing in Senegal.

Across Africa, governments and scientists alike are heralding groundnuts’ potential to lead resource-poor farmers out of poverty.

Around 5,000 years ago in the north of Argentina, two species of wild groundnuts got together to produce a natural hybrid. The result of this pairing is the groundnut grown today across the globe, particularly in Africa and Asia. Now, scientists are discovering the treasures hidden in the genes of these ancient ancestors.

Nearly half of the world’s groundnut growing area lies within the African continent, yet Africa’s production of the legume has, until recently, accounted for only 25 percent of global yield. Drought, pests, diseases and contamination are all culprits in reducing yields and quality. But through the CGIAR Generation Challenge Programme (GCP), scientists have been developing improved varieties using genes from the plant’s ancient ancestors. These new varieties are destined to make great strides towards alleviating poverty in some of the world’s most resource-poor countries.

Photo: Bill & Melinda Gates Foundation

A Ugandan farmer at work weeding her groundnut field.

A grounding in the history of Africa’s groundnuts

From simple bar snack in the west to staple food in developing countries, groundnuts – also commonly known as peanuts – have a place in the lives of many peoples across the world. First domesticated in the lush valleys of Paraguay, groundnuts have been successfully bred and cultivated for millennia. Today they form a billion-dollar industry in China, India and the USA, while also sustaining the livelihoods of millions of farming families across Africa and Asia.

Groundnut facts and figures •	About one-third of groundnuts produced globally are eaten and two-thirds are crushed for oil  •	The residue from oil processing is used as an animal feed and fertiliser •	Oils and solvents derived from groundnuts are used in medicines, textiles, cosmetics, nitro-glycerine, plastics, dyes, paints, varnishes, lubricating oils, leather dressings, furniture polish, insecticides and soap •	Groundnut shells are used to make plastic, wallboard, abrasives, fuel, cellulose and glue; they can also be converted to biodiesel

“The groundnut is one of the most important income-generating crops for my country and other countries in East Africa,” says Malawian groundnut breeder Patrick Okori, Principal Scientist at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), who was also GCP’s Product Delivery Coordinator for groundnuts.

“It’s like a small bank for many smallholder farmers, one that can be easily converted into cash, fetching the highest prices,” he says.

The situation is similar in West Africa, according to groundnut breeder Issa Faye from the Institut Sénégalais de Recherches Agricoles (ISRA; Senegalese Agricultural Research Institute), who has been involved in GCP since 2008. “It’s very important for Senegal,” he says. “It’s the most important cash crop here – a big source of revenue for farmers around the country. Senegal is one of the largest exporters of peanut in West Africa.”

Groundnuts have good potential for sustaining a strong African export industry in future, while providing a great source of nutrition for Africa’s regional farming families.

“We believe that by using what we have learnt through GCP, we will be able to boost the production and exportation of groundnuts from Senegal to European countries, and even to Asian countries,” says Issa. “So it’s very, very important for us.”

Photo: Joseph Hill/Flickr (Creative Commons)

Harvested groundnuts in Senegal.

How Africa lost its groundnut export market

Photo: V Vadez

Groundnuts in distress under drought conditions.

In Africa, groundnuts have mostly been grown by impoverished smallholder farmers, in infertile soils and dryland areas where rainfall is both low and erratic. Drought and disease cause about USD 500 million worth of losses to groundnut production in Africa every year.

“Because groundnut is self-pollinating, most of the time poor farmers can recycle the seed and keep growing it over and over,” Patrick says. “But for such a crop you need to refresh the seed frequently, and after a certain period you should cull it. So the absence of, or limited access to, improved seed for farmers is one of the big challenges we have. Because of this, productivity is generally less than 50 percent of what would be expected.”

Photo: S Sridharan/ICRISAT

Rosette virus damage to groundnut above and below ground.

Diseases such as the devastating groundnut rosette virus – which is only found in Africa and has been known to completely wipe out crops in some areas – as well as pests and preharvest seed contamination have all limited crop yields and quality and have subsequently shut out Africa’s groundnuts from export markets.

The biggest blow for Africa came in the 1980s from a carcinogenic fungal toxin known as aflatoxin, explains Patrick.

Photo: IITA

Aflatoxin-contaminated groundnut kernels from Mozambique.

Aflatoxin is produced by mould species of the genus Aspergillus, which can naturally occur in the soil in which groundnuts are grown. When the fungus infects the legume it produces a toxin which, if consumed in high enough quantities, can be fatal or cause cancer. Groundnut crops the world over are menaced by aflatoxin, but Africa lost its export market because of high contamination levels.

“That’s why a substantial focus of the GCP research programme has been to develop varieties of groundnuts with resistance to the fungus,” says Patrick.

After a decade of GCP support, a suite of new groundnut varieties representing a broad diversity of characteristics is expected to be rolled out in the next two or three years. This suite will provide a solid genetic base of resistance from which today’s best commercial varieties can be improved, so the levels of aflatoxin contamination in the field can ultimately be reduced.

Ancestral genes could hold the key to drought tolerance and disease resistance

In April 2014, the genomes of the groundnut’s two wild ancestral parents were successfully sequenced by the International Peanut Genome Initiative – a multinational group of crop geneticists, who had been working in collaboration for several years.

The sequencing work has given breeders access to 96 percent of all groundnut genes and provided the molecular map needed to breed drought-tolerant and disease-resistant higher-yielding varieties, faster.

“The wild relatives of a number of crops contain genetic stocks that hold the most promise to overcome drought and disease,” says Vincent Vadez, ICRISAT Principal Scientist and groundnut research leader for GCP’s Legumes Research Initiative. And for groundnut, these stocks have already had a major impact in generating the genetic tools that are key to making more rapid and efficient progress in crop breeding.

“Genetically, the groundnut has always been a really tough nut to crack,” says GCP collaborator David Bertioli, from the University of Brasilia in Brazil. “It has a complex genetic structure, narrow genetic diversity and a reputation for being slow and difficult to breed. Until its genome was sequenced, the groundnut was bred relatively blindly compared to other crops, so it has remained among the less studied crops,” he says.

With the successful genome sequencing, however, researchers can now understand groundnut breeding in ways they could only dream of before.

Photo: N Palmer/CIAT

Groundnut cracked.

“Working with a wild species allows you to bring in new versions of genes that are valuable for the crop, like disease resistance, and also other unexpected things, like improved yield under drought,” David says. “Even things like seed size can be altered this way, which you don’t really expect.”

The sequencing of the groundnut genome was funded by The Peanut Foundation, Mars Inc. and three Chinese academies (the Chinese Academy of Agricultural Sciences, the Henan Academy of Agricultural Sciences, and the Shandong Academy of Agricultural Sciences), but David credits GCP work for paving the way. “GCP research built up the populations and genetic maps that laid the groundwork for the material that then went on to be sequenced.”

Chair of GCP’s Consortium Committee, David Hoisington – formerly ICRISAT’s Director of Research and now Senior Research Scientist and Program Director at the University of Georgia – says the sequencing could be a huge step forward for boosting agriculture in developing countries.

“Researchers and plant breeders now have much better tools available to breed more productive and more resilient groundnut varieties, with improved yields and better nutrition,” he says.

These resilient varieties should be available to farmers across Africa within a few years.

Genetics alone will not lift productivity – farmers’ local knowledge is vital

Improvements in the yield, quality and share of the global market of groundnuts produced by developing countries are already being seen as a result of GCP support, says Vincent Vadez. “But for this trend to continue, the crop’s ability to tolerate drought and resist diseases must be improved without increasing the use of costly chemicals that most resource-poor farmers simply cannot afford,” he says.

While genetic improvements are fundamental to developing the disease resistance and drought tolerance so desperately needed by African farmers, there are other important factors that can influence the overall outcome of a breeding programme, he explains. Understanding the plant itself, the soil and the climate of a region are all vital in creating the kinds of varieties farmers need and can grow in their fields.

Photo: Y Wachira/Bioversity International

Kenyan groundnut farmer Patrick Odima with some of his crop.

“I have grown increasingly convinced that overlooking these aspects in our genetic improvements would be to our peril,” Vincent warns. “There are big gains to be made from looking at very simple sorts of agronomic management changes, like sowing density – the number of seeds you plant per square metre. Groundnuts are often cultivated at seeding rates that are unlikely to achieve the best possible yields, especially when they’re grown in infertile soils.”

For Omari Mponda, now Director of Tanzania’s Agricultural Research Institute at Naliendele (ARI–Naliendele), previously Zonal Research Coordinator and plant breeder, and country groundnut research leader for GCP’s Tropical Legumes I project (TLI; see box below), combining good genetics with sound agronomic management is a matter of success or failure for any crop-breeding programme, especially in poverty-stricken countries.

“Molecular markers by themselves will not address the productivity on the ground,” he says, agreeing with Vincent. “A new variety of groundnut may have very good resistance, but its pods may be too hard, making shelling very difficult. This does not help the poor people, because they can’t open the shells with their bare hands.”

And helping the poor of Africa is the real issue, Omari says. “We must remind ourselves of that.”

This means listening to the farmers: “It means finding out what they think and experience, and using that local knowledge. Only then should the genetics come in. We need to focus on the connections between local knowledge and scientific knowledge. This is vital.”

The Tropical Legumes I project (TLI) was initiated by GCP in 2007 and subsequently incorporated into the Programme’s Legumes Research Initiative (RI). The goal of the RI was to improve the productivity of four legumes – beans, chickpeas, cowpeas and groundnuts – that are important in food security and poverty reduction in developing countries, by providing solutions to overcome drought, poor soils, pests and diseases. TLI was led by GCP and focussed on Africa. Work on groundnut within TLI was coordinated by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). The partners in the four target countries were Malawi’s Chitedze Research Station, Senegal’s Institut Sénégalais de Recherches Agricoles (ISRA), and Tanzania’sAgricultural Research Institute (ARI). Other partners were France’s Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), the Brazilian Corporation of Agricultural Research (EMBRAPA) and Universidade de Brasil in Brazil, and University of Georgia in the USA. Tropical Legumes II (TLII) was a sister project to TLI, led by ICRISAT on behalf of the International Institute of Tropical Agriculture (IITA) and International Center for Tropical Agriculture (CIAT). It focussed on large-scale breeding, seed multiplication and distribution primarily in sub-Saharan Africa and South Asia, thus applying the ‘upstream’ research results from TLI and translating them into breeding materials for the ultimate benefit of resource-poor farmers. Many partners in TLI also worked on projects in TLII.

Photo: A Diama/ ICRISAT

Participants at a farmer field day in Mali interact with ICRISAT staff and examine different groundnut varieties and books on aflatoxin control and management options.

Local knowledge and high-end genetics working together in Tanzania

Like Malawi, Tanzania has also experienced the full spectrum of constraints to groundnut production – from drought, aflatoxin contamination, poor soil and limited access to new seed, to a lack of government extension officers visiting farmers to ensure they have the knowledge and skills needed to improve their farming practices and productivity.

Although more than one million hectares of Tanzania is groundnut cropping land, the resources supplied by the government have until now been minimal, says Omari, compared to those received for traditional cash crops such as cashews and coffee.

Photo: C Schubert/CCAFS

A farmer and her children near Dodoma, Tanzania, an area where climate change is causing increasing heat and drought. Groundnut is an important crop for local famers, forming the basis of their livelihood together with maize and livestock.

“But the groundnut is now viewed differently by the government in my country as a result of GCP’s catalytic efforts,” Omari says. “More resources are being put into groundnut research.”

In the realm of infrastructure, for instance, the use of GCP funds to build a new irrigation system at Naliendele has since prompted Tanzania’s government to invest further in irrigation for breeder seed production.

“They saw it was impossible for us to irrigate our crops with only one borehole, for instance, so they injected new funds into our irrigation system. We now have two boreholes and a whole new system, which has helped expand the seed production flow. Without GCP, this probably wouldn’t have happened.”

Irrigation, for Omari, ultimately means being able to get varieties to the farmers much faster: “maybe three times as fast,” he says. “This means we’ll be able to speed up the multiplication of seeds – in the past we were relying on rainfed seed, which took longer to bulk and get to farmers.”

With such practical outcomes from GCP’s research and funding efforts and the new genetic resources becoming available, breeders like Omari see a bright future for groundnut research in Tanzania.

Photo: C Schubert/CCAFS

Groundnut farmer near Dodoma, Tanzania.

The gains being made at Naliendele are not only sustainable, Omari explains, but have given the researchers independence and autonomy. “Before we were only learning – now we have become experts in what we do.”

Prior to GCP, Omari and his colleagues were used to conventional breeding and lacked access to cutting-edge science.

“We used to depend on germplasm supplied to us by ICRISAT, but now we see the value in learning to use molecular markers in groundnut breeding to grow our own crosses, and we are rapidly advancing to a functional breeding programme in Tanzania.”

Omari says he and his team now look forward to the next phase of their research, when they expect to make impact by practically applying their knowledge to groundnut production in Tanzania.

Similar breeding success in Senegal

Photo: C Schubert/CCAFS

Harvesting groundnuts in Senegal.

Issa Faye became involved in GCP in 2008 when the programme partly funded his PhD in fresh seed dormancy in groundnuts. “I was an example of a young scientist who was trained and helped by GCP in groundnut research,” he says.

“I remember when I was just starting my thesis, my supervisor would say, ‘You are very lucky because you will not be limited to using conventional breeding. You are starting at a time when GCP funding is allowing us to use marker-assisted selection [MAS] in our breeding programme’.”

The importance of MAS in groundnut breeding, Issa says, cannot be overstated.

“It is very difficult to distinguish varieties of cultivated groundnut because most of them are morphologically very similar. But if you use molecular markers you can easily distinguish them and know the diversity of the matter you are using, which makes your programme more efficient. It makes it easier to develop varieties, compared to the conventional breeding programme we were using before we started working with GCP.”

By using markers that are known to be linked to useful genes for traits such as drought tolerance, disease resistance, or resistance to aflatoxin-producing fungi, breeders can test plant materials to see whether or not they are present. This helps them to select the best parent plants to use in their crosses, and accurately identify which of the progeny have inherited the gene or genes in question without having to grow them all to maturity, saving time and money.

Photo: S Sridharan/ICRISAT

These women in Salima District, Malawi, boil groundnuts at home and carry their tubs to the Siyasiya roadside market.

Senegal, like other developing countries, does not have enough of its own resources for funding research activities, explains Issa. “We can say we are quite lucky here because we have a well-developed and well-equipped lab, which is a good platform for doing molecular MAS. But we need to keep improving it if we want to be on the top. We need more human resources and more equipment for boosting all the breeding programmes in Senegal and across other regions of West Africa.”

Recently, Issa says, the Senegalese government has demonstrated awareness of the importance of supporting these activities. “We think that we will be receiving more funds from the government because they have seen that it’s a kind of investment. If you want to develop agriculture, you need to support research. Funding from the government will be more important in the coming years,” he says.

“Now that we have resources developed through GCP, we hope that some drought-tolerant varieties will come and will be very useful for farmers in Senegal and even for other countries in West Africa that are facing drought.”

It’s all about poverty

“The achievements of GCP in groundnut research are just the beginning,” says Vincent. The legacy of the new breeding material GCP has provided, he says, is that it is destined to form the basis of new and ongoing research programmes, putting research well ahead of where it would otherwise have been.

“There wasn’t time within the scope of GCP to develop finished varieties because that takes such a long time, but these products will come,” he says.

For Vincent, diverse partnerships facilitated by GCP have been essential for this to happen. “The groundnut work led by ICRISAT and collaborators in the target countries – Malawi, Senegal, and Tanzania – has been continuously moving forward.”

Photo: S Sridharan/ICRISAT

Groundnut harvesting at Chitedze Agriculture Research Station, Malawi.

Issa agrees: “It was fantastic to be involved in this programme. We know each other now and this will ease our collaborations. We hope to keep working with all the community, and that will obviously have a positive impact on our work.”

For Omari, a lack of such community and collaboration can only mean failure when it comes to addressing poverty.

“If we all worked in isolation, a lot of money would be spent developing new varieties but nothing would change on the ground,” he says. “Our work in Tanzania is all about the problem of poverty, and as scientists we want to make sure the new varieties are highly productive for the farmers around our area. This means we need to work closely with members of the agricultural industry, as a team.”

Omari says he and his colleagues see themselves as facilitators between the farmers of Tanzania and the ‘upstream end’ of science represented by ICRISAT and GCP. “We are responsible for bringing these two ends together and making the collaboration work,” he says.

Only from there can we come up with improved technologies that will really succeed at helping to reduce poverty in Africa.”

As climate change threatens to aggravate poverty more and more in the future, the highly nutritious, drought-tolerant groundnut may well be essential to sustain a rapidly expanding global population.

By developing new, robust varieties with improved adaptation to drought, GCP researchers are well on the way to increasing the productivity and profitability of the groundnut in some of the poorest regions of Africa, shifting the identity of the humble nut to potential crop champion for future generations.

More links

Photo: S Sridharan/ICRISAT

Oswin Madzonga, Scientific Officer at ICRISAT-Lilongwe, visits on-farm trials near Chitala Research Station in Salima, Malawi, where promising disesase-resistant varieties are being tested real life conditions.

Jun 192015
 
Photo: N Palmer/CIAT

Bean Market in Kampala, Uganda.

Common beans are the world’s most important food legume, particularly for subsistence and smallholder farmers in East and Southern Africa. They are a crucial source of protein, are easy to grow, are very adaptable to different cropping systems, and mature quickly.

To some, beans are ‘a near-perfect food’ because of their high protein and fibre content plus their complex carbohydrates and other nutrients. One cup of beans provides at least half the recommended daily allowance of folate, or folic acid – a B vitamin that is especially important for pregnant women to prevent birth defects. One cup also supplies 25–30 percent of the daily requirement of iron, 25 percent of that of magnesium and copper, and 15 percent of the potassium and zinc requirement.

Unfortunately, yields in Africa are well below their potential – between 20 and 30 percent below. The main culprit is drought, which affects 70 percent of Africa’s major bean-producing regions. Drought is especially severe in the mid-altitudes of Ethiopia, Kenya, Malawi and Zimbabwe, as well as across Southern Africa.

“For the past seven or eight years, rains have been very unreliable in central and northern Malawi,” says Virginia Chisale, a bean breeder with Malawi’s Department of Agricultural Research and Technical Services.

“In the past, rains used to be very reliable and people were able to know the right time to plant to meet the rains in critical conditions,” she says. “Now these primary agriculture regions are either not receiving rain for long periods of time, or rains are not falling at the right time.”

Virginia recounts that during the 2011/12 cropping season there were no rains soon after planting, when it is important that beans receive moisture. Such instances can cut bean yields by half.

Photo: N Palmer/CIAT

Steve Beebe in the field.

“Drought is a recurrent problem of rainfed agriculture throughout the world,” says Steve Beebe, a leading bean breeder with the International Center for Tropical Agriculture (CIAT). “Since over 80 percent of the world’s cultivated lands are rainfed, drought stress has major implications for global economy and trade.”

Steve was the Product Delivery Coordinator for the beans component of the Legumes Research Initiative (RI), part of Phase II of the CGIAR Generation Challenge Programme (GCP). The RI incorporated several projects, the biggest of which was Tropical Legumes I (TLI) (see box). The main objective of the work on beans within TLI was to identify and develop drought-tolerant varieties using marker-assisted breeding techniques. The resulting new varieties were then evaluated for their performance in Ethiopia, Kenya, Malawi and Zimbabwe.

“It’s vital that we develop high-yielding drought-tolerant varieties so as to help farmers, particularly in developing countries, adapt to drought and produce sustained yields for their families and local economies,” says Steve.

The Tropical Legumes I project (TLI) was initiated by GCP in 2007 and subsequently incorporated into the Programme’s Legumes Research Initiative (RI). The goal of the RI was to improve the productivity of four legumes – beans, chickpeas, cowpeas and groundnuts – that are important in food security and poverty reduction in developing countries, by providing solutions to overcome drought, poor soils, pests and diseases. TLI was led by GCP and focussed on Africa. Work on beans within TLI was coordinated by the International Center for Tropical Agriculture (CIAT). The partners in the four target countries were Ethiopia’s South Agricultural Research Institute (SARI), the Kenya Agricultural Research Institute (now known as the Kenya Agricultural and Livestock Research Organization, KALRO), Malawi’s Department of Agricultural Research and Technical Services (DARTS) and Zimbabwe’s Crop Breeding Institute (CBI) of the Department of Research and Specialist Services (DR&SS). Cornell University in the USA was also a partner. Tropical Legumes II (TLII) was a sister project to TLI, led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) on behalf of the International Institute of Tropical Agriculture (IITA) and CIAT. It focussed on large-scale breeding, seed multiplication and distribution primarily in sub-Saharan Africa and South Asia, thus applying the ‘upstream’ research results from TLI and translating them into breeding materials for the ultimate benefit of resource-poor farmers. Many partners in TLI also worked on projects in TLII.

For an overview of the work on beans from the perspectives of four different partners, watch our video below, “The ABCs of bean breeding”.

What makes a plant drought tolerant?

The question of what makes a plant drought tolerant is one that breeders have debated for centuries. No single plant characteristic or trait can be fully responsible for protecting the plant from the stress of intense heat and reduced access to water.

“It’s a difficult question to answer for any plant, including beans,” says Steve. “Once you do isolate a trait genetically, it can often be difficult to identify this trait in a plant in the field, for example, identifying the architecture and length of a plant’s roots.”

Phenotyping is an important process in conventional plant breeding. It involves identifying and measuring the presence of physical traits such as seed colour, pod size, stem thickness or root length. Gathering data about a range of such characteristics across a number of different plant lines helps breeders decide which plants to use as parents in crosses and which of the progeny have inherited useful traits.

Root length has long been thought of as a drought-tolerance trait: the longer the root, the more chance it has of tapping into moisture stored deeper in the soil profile.

Given, however, that it is difficult to inspect root length in the field, researchers at CIAT have been exploring other more accessible drought-tolerance traits they can more easily identify and measure. One of these is measuring the weight of the plants’ seeds.

Photo: N Palmer/CIAT

Comparison between varieties in trials of drought tolerant beans at CIAT’s headquarters in Colombia.

Fat beans indicate plants coping with drought stress

“We measure seed weight because we are discovering that under drought stress, drought-tolerant bean varieties will divert sugars from their leaves, stems and pods to their seed,” says Steve. “We call this trait ‘pod filling’, and for us it is the most important drought-tolerance trait to be found over the last several years.”

Finding bean plants with larger, heavier seeds when growing under drought conditions indicates that the plants are coping well, and means farmers’ yields are maintained.

As part of GCP’s Legumes RI, African partners like Virginia have been measuring the seed weight of several advanced breeding lines, which can be used as parents to develop new varieties. These breeding lines have been bred by CIAT and demonstrate this pod-filling process and consequent tolerance of drought.

Although this measurement is relatively cheap and easy for breeders all over the world to do, Steve and his team are interested in finding an even more efficient way to spot plants that maintain full pods under drought.

“We are trying to understand which genes control this trait so we can use molecular-assisted breeding techniques to determine when the trait is present,” says Steve. Having identified several regions of genes related to pod filling, he and his team have developed molecular markers to help breeders identify which plants have these desired genes. “The use of molecular markers in selection significantly reduces the time and cost of the breeding process, making it more efficient. This means that we get improved varieties out to farmers more quickly.”

Photo: N Palmer/CIAT

Bean farmer in Rwanda.

Molecular markers (also known as DNA markers) are used by researchers as ‘flags’ to identify particular genes within a plant’s genome (DNA) that control desired traits, such as drought tolerance. These markers are themselves fragments of DNA that highlight particular genes or regions of genes by binding near them.

To use an analogy, think of a story as the plant’s genome: its words are the plant’s genes, and a molecular marker works like a text highlighter. Molecular markers are not precise enough to highlight specific words (genes), but they can highlight sentences (genomic regions) that contain these words (genes), making it easier and quicker to identify whether or not they are present.

Photo: J D'Amour/HarvestPlus

Beans from Rwanda.

Plant breeders can use molecular markers from early on in the breeding process to choose parents for their crosses and determine whether progeny they have produced have the desired trait, based on testing only a small amount of seed or seedling tissue.

“If the genes are present, we grow the progeny and conduct the appropriate phenotyping; if not, we throw the progeny away,” explains Steve. “This saves us resources and time because we need to grow and phenotype only the few hundred progeny which we know have the desired genes, instead of a few thousand progeny, most of which would not possess the gene.”

Outsourcing genotyping to the UK Steve says a significant contribution made by GCP was facilitating a deal with a private UK company (LGC Genomics, formerly KBioscience) that is able to quickly and cheaply genotype leaf samples sent to them by African breeders. The company then forwards the data to the International Center for Tropical Agriculture (CIAT), who analyse it and let the breeders in Africa know which progeny contain the desired genes and are suitable for breeding, and which ones to throw away.  “The whole process takes roughly four weeks, but saves the breeders the time and effort to grow all progeny,” says Steve. “This system works well for countries that don’t have the capacity or know-how to do the molecular work,” says Darshna Vyas, a plant genetics specialist with LGC Genomics. “Genotyping has advanced to a point where even larger labs around the world choose to outsource their genotyping work, as it is cheaper and quicker than if they were to equip their lab and do it themselves. We do hundreds of thousands of genotyping samples a day – day in, day out. It’s our business.”

GCP has supported this foundation work, building on the extensive bean research already done by CIAT dating back to the 1970s, to develop molecular markers not only for drought-tolerance traits such as pod filling, but also for traits associated with resistance to important insect and disease menaces.

“Under drought conditions, plants become more susceptible to pests and diseases, so it was important that we also try to identify and include resistance traits in the drought-tolerant progeny,” says Steve.

Drought is but one plant stressor – diseases and pests wreak havoc too

Photo: W Arinaitwe/CIAT/PABRA

Common bacterial blight on bean.

The bean diseases that farmers in Ethiopia, Kenya, Malawi and Zimbabwe continually confront are angular leaf spot, bean common mosaic virus, common bacterial blight and rust. Key insect pests are bean stem maggot and aphids.

“We’ve had reports of bean stem maggot and bean common mosaic virus wiping out a whole field of beans,” says Virginia. “Although angular leaf spot and common bacterial blight are not as damaging, they can still reduce yields by over 50 percent.”

Virginia says this is devastating for farmers in Malawi, many of whom only have enough land and money to grow beans to feed their families and sell what little excess there is at market to purchase other necessities.

“This is why we are excited by the prospect of developing not just drought-tolerant varieties, but drought-tolerant varieties with disease and pest resistance as well,” says Virginia.

Virginia’s team in Malawi – along with other breeders in Ethiopia, Kenya and Zimbabwe – are currently using over 200 Mesoamerican and Andean bean breeding lines supplied by CIAT to help breed for drought tolerance and disease and pest resistance. Although many do not yet have the capacity to do molecular breeding in their countries, thanks to advances in plant science it is becoming more feasible and cheaper to outsource molecular breeding stages of the process (see box above).

“With help from GCP and CIAT, we have successfully crossed a line from CIAT with some local varieties to produce plants that are high yielding and resistant to most common bean diseases,” Virginia says.

Photo: ILRI

Malawian farmer Jinny Lemson grows beans to feed her livestock.

Ethiopia’s new bean breeders

Photo: ILRI

Young women sorting beans after a harvest in Ethiopia.

One man who has been helping build this new breeding capacity is Bodo Raatz, a molecular geneticist who joined CIAT and GCP’s Legumes RI in late 2011.

“We’ve [CIAT] hosted several African PhD students here in Colombia and have conducted several workshops in Colombia and Africa too,” says Bodo.

“At the workshops we teach local breeders and technicians how to use genetic tools and markers for advanced breeding methods, phenotyping and data management. The more people there are who can do this work, the quicker new varieties will filter through to farmers.”

Bodo says he has found delivering the training both personally and professionally rewarding, especially “seeing the participants understand the concepts and start using the tools and techniques to develop new lines [of bean varieties] and contribute to the project.”

One national breeder whom Bodo has seen advance from the training is Daniel Ambachew, then a bean breeder at the Southern Agricultural Research Institute (SARI) in Ethiopia.

Daniel started as a GCP-funded Master’s student enrolled at Haramaya University, Ethiopia, evaluating bean varieties with both tolerance to drought and resistance to bean stem maggot. He eventually became the Ethiopian project leader for beans within GCP’s Legumes RI.

“Daniel is currently one of only a handful of bean breeders in Ethiopia who are using molecular-assisted breeding techniques to breed new varieties,” says Bodo. “It’s quite an achievement, especially now that he has taken on the lead role in Ethiopia.”

Photo: N Palmer/CIAT

Buying and selling at a bean market in Kampala, Uganda.

For Daniel, learning about and using the new molecular-breeding techniques has been an exciting new challenge. “The most interesting part of the technology is that it helps us understand what is going on in the plant at a molecular level and lets us know if the crosses we are making are successful and the genes we want are present,” says Daniel. “All this helps improve our efficiency and speeds up the time it takes us to breed and release new varieties for farmers.”

By the end of 2014, Daniel and his team had finished the third year of trials and had several drought-tolerant lines ready for national trials in 2015 and eventual release in 2016.

Between 2012 and 2014, Daniel, and two other breeders from SARI, attended GCP’s three-year Integrated Breeding Multiyear Course, learning how to design molecular-assisted breeding trials; collect, analyse and interpret genotypic and phenotypic data from the trials; and manage data using the GCP’s Integrated Breeding Platform (IBP), particularly its Breeding Management System (BMS).

“The IBP is a really fantastic tool,” says Daniel. “During the course we learnt about the importance of recording clear and consistent phenotypic data, and the IBP helps us to do this as well as store it in a database. It makes it easier to refer to and learn from the past. I’m now trying to pass on the knowledge I’ve learnt as well as create and implement a data-management policy for all plant breeders and technicians in our institute.”

Bodo agrees with Daniel about the importance of IBP and believes it will be a true legacy of GCP beyond the Programme’s end in 2014. “The Platform has been designed to be the main data-management platform for plant breeders. It allows breeders to talk the same language and will reduce the need for learning new systems.”

Daniel says the challenge for his institute now is to build further capacity among staff – and to retain it. “At the moment we only have two bean breeders,” says Daniel. “It’s hard to retain research staff in Ethiopia as salaries are very low, so people move on to new, higher paying positions when they get the chance. It’s not unique to Ethiopia, but true of all Africa.”

Photo: O Thiong'o/CIAT/PABRA

Bean trials at KALRO in Kenya.

Kenya chasing higher bean yields

Across the border, Kenya has also been facing staffing issues.

“We are behind Ethiopia, Malawi and Zimbabwe in terms of our capacity and our trials,” says David Karanja, a bean breeder and project leader at the Kenya Agricultural and Livestock Research Organisation (KALRO, formerly the Kenya Agricultural Research Institute, or KARI). “At the start of the project, we didn’t have a breeder to lead the project for almost two years. However, we are now rapidly catching up with the others.”

And it’s a good thing too, as the country is in need of higher yielding beans to accommodate its population’s insatiable appetite for the crop. Out of the four target African countries, Kenya is the largest bean producer and consumer. As such, the country relies on beans imports from Ethiopia, Malawi, Tanzania and Uganda.

“A lot of families eat beans every day,” says David. “On average, the population eats 14–16 kilograms per person each year, but in western Kenya the average is over 60 kilograms.”

Photo: CIMMYT

Githeri, a Kenyan staple food made with maize and beans.

Kenyans consume an average total of 400,000 tonnes of beans each year, consistently more than the country produces. Projected trends in population growth indicate that this demand for beans will continue to increase by three to four percent annually.

Even though the area planted to beans has been increasing, David says farmers and breeders need to work together to improve productivity, which is well below where it should be. “The national average yield is 100 kilograms per hectare, which can range from 50 kilograms up to 700 kilograms, depending on whether we experience a drought, or a pest or disease epidemic,” explains David. “The minimum target we should be aiming for is 1,200 kilograms per hectare.”

Such a figure may seem impossible, but David believes that new breeding techniques and the varieties KALRO are producing with the help of CIAT are providing hope that farmers can reach these lofty goals.

“We have several bean lines that are showing good potential to produce higher yields under drought conditions and also have resistance to diseases like rust and mosaic virus,” says David. “They are currently under national trials, and we are confident these will be released to farmers in 2015.”

Photo: O Thiong'o/CIAT/PABRA

Varieties fare differently in KALRO bean trials in Kenya.

Commercialising beans

Photo: CIAT

Maturing bean pods.

“Many subsistence farmers have limited access to good quality bean seeds; they lack knowledge of good crop, pest and disease management; and they have poor post-harvest storage facilities,” says Godwill Makunde, who was previously a breeder at Zimbabwe’s Crop Breeding Institute (CBI) and leader of GCP’s Legumes RI bean project in Zimbabwe.

TLI’s sister project, Tropical Legumes II (TLII, see box above), led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), provided the route by which the upstream work of TLI would have impact in helping these farmers, seeking to deliver the new varieties developed under TLI into their hands. As part of TLII, Godwill, his successor Bruce Mutari, and other African partners worked on developing sustainable seed systems.

“Because beans are self-pollinating, which means each crop is capable of producing seed exactly as it was sown, farmers tend to propagate seed on farm,” says Godwill. “While this can be cost effective, it can reduce farmers’ access to higher yielding, tolerant lines, like the ones we are currently producing.”

In none of the partner countries of TLI and TLII are there formal systems for producing and disseminating bean seeds. Godwill and other partners are working with seed companies on developing a sustainable model where both farmers and seed companies can benefit.

Success built on a solid foundation

Photo: N Palmer/CIAT

Field workers tend beans in Rwanda.

A key to the success of the beans component of GCP’s Legumes RI, according to Ndeye Ndack Diop, GCP’s Capacity Building Theme Leader and TLI Project Manager, has been partners’ existing relationships with each other.

“Many of the partners are part of a very strong network of bean breeders: the Bean Coordinated Agricultural Project [BeanCAP],” explains Ndeye Ndack, adding that the TLI and BeanCAP networks benefited each other.

BeanCAP released more than 1,500 molecular markers to TLI researchers, which have helped broaden the genetic tools available to developing-country bean breeders.

TLI was also able to leverage and advance previous BeanCAP work and networks. For example, it was through this collaboration that GCP was introduced to LGC Genomics, a company it then worked with on many other crop projects.

To sustain integrated breeding practices beyond the Programme’s close in 2014, GCP established Communities of Practice (CoPs) that are discipline- and commodity-oriented.

“GCP’s CoP for beans has also helped to broaden both the TLI and BeanCAP networks too,” says Ndeye Ndack. “The ultimate goal of the CoPs is to provide a platform for community problem solving, idea generation and information sharing.”

Developing physical capacity

Besides developing human capacity, GCP has also invested in developing infrastructure in Ethiopia, Kenya and Zimbabwe.

SARI now has an irrigation system to enable them to conduct drought trials year round. “We have 12.5 hectares of irrigation now, which we use to increase our efficiency and secure our research,” says Daniel. “We can also increase seed with this irrigation during the off-season and develop early generation seeds for seed producers.”

In Zimbabwe, CBI received specialised equipment that enables them to extract DNA and send it for genotyping in the UK.

Both SARI and CBI also received automatic weather stations from GCP for high-precision climatic data capture, with automated data loading and sharing with other partners in the network.

Delivering the right beans to farmers

Back in Malawi, Virginia says another important facet of the TLII project is that researchers understand what qualities farmers want in their beans. “It’s no use developing higher yielding beans if the farmer doesn’t like the colour, or they don’t taste nice,” she says. “For example, consumers in central Malawi prefer khaki or ‘sugar beans’, which are tan with brown, black or red speckles. While those in southern Malawi tend to prefer red beans. Farmers know this and will grow beans that they know consumers will want.”

Photo: N Palmer/CIAT

Diversity at bean market in Masaka, Uganda.

Breeders in all four countries have been conducting workshops and small trials with farmers to find out this information. In Kenya, David finds farmer participation a great way to promote the work they are doing and show the impact the new drought-tolerant and disease-resistant lines can have.

“Farmers are excited and want to grow these varieties immediately when they see for themselves the difference in yield these new varieties can produce compared to their regular varieties,” says David. “They understand the pressure on them to produce more yields and are grateful that these varieties are becoming more readily available as well as tailored to their needs.”

For Steve, such anecdotes provide him and his collaborators with incentives to continue their quest to discover more molecular markers associated with drought tolerance, post-GCP.

“It’s a testament to everyone involved that we have been able to develop these advanced lines with pod-filling traits using molecular techniques, and make them available to farmers in six years instead of ten,” says Steve.

More links