Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Nov 062015
 

 

 Photo: C Schubert/CCAFSWhere to begin a decade-long story like that of the CGIAR Generation Challenge Programme (GCP)? This time-bound programme concluded in 2014 after successfully catalysing the use of advanced plant breeding techniques in the developing world.

Like all good tales, the GCP story had a strong theme: building partnerships in modern crop breeding for food security. It had a strong cast of characters: a palpable community of staff, consultants and partners from all over the world. And it had a formidable structure – two distinct phases split equally over the decade to first discover new plant genetic information and tools, and then to apply what the researchers learnt to breed more tolerant and resilient crops.

In October 2014, at the final General Research Meeting in Thailand, GCP Director Jean-Marcel Ribaut paid tribute to GCP’s cast and crew: “To all the people involved in GCP over the last 12 years, you are the real asset of the Programme,” he told them.

“In essence, our work has been all about partnerships and networking, bringing together players in crop research who may otherwise never have worked together,” says Jean-Marcel. “GCP’s impact is not easy to evaluate but it’s extremely important for effective research into the future. We demonstrated proofs of concept that can be scaled up for powerful results.”

A significant aspect of GCP’s legacy is the abundance of collaborations it forged and fostered between international researchers. A typical GCP project brought together public and private partners from both developing and developed nations and from CGIAR Centres. In all, more than 200 partners collaborated on GCP projects.

Photo: GCP

Just some of the extended GCP family assembled for the Programme’s final General Research Meeting in 2014.

The idea that the ‘community would pave the way towards success’ was always a key foundation of GCP, according to Dave Hoisington, who was involved with GCP from its conception and was latterly Chair of GCP’s Consortium Committee. “We designed GCP to provide opportunities for researchers to work together,” says Dave. He is a senior research scientist and program director at the University of Georgia, and was formerly Director of Research at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Director of the Genetic Resources Program and of the Applied Biotechnology Center at the International Maize and Wheat Improvement Center (CIMMYT).

“GCP was the mechanism that would help us to complete our mission – to tap into the rich genetic diversity of crops and package it so that breeding programme researchers could integrate it into their operations,” says Dave.

Photo: ICRISAT

A little girl tucks into sorghum porridge in Mali.

The dawn of a new generation

Food security in the developing world continues to be one of the greatest global challenges of our time. One in nine people worldwide – or more than 820 million people – go hungry every day.

Although this figure is currently diminishing, a changing global climate is making food production more challenging for farmers. Farmers need higher yielding crops that can grow with less water, tolerate higher temperatures and poorer soils, and resist pests and diseases.

The turn of the millennium saw rapid technological developments emerging in international molecular plant science. New tools and approaches were developed that enabled plant scientists, particularly in the developing world, to make use of genetic diversity in plants that was previously largely inaccessible to them. These tools had the potential to increase plant breeders’ capacity to rapidly develop crop varieties able to tolerate extreme environments and yield more in farmers’ fields.

Photo: J van de Gevel/Bioversity International

Wheat varieties in a field trial.

Dave was one scientist who early on recognised the significance and potential of this new dawn in plant science. In 2002, while working at CIMMYT, he teamed up with the Center’s then Director General, Masa Iwanaga, and its then Executive Officer for Research, Peter Ninnes – another long-term member of the GCP family who at the other end of the Programme’s lifespan became its Transition Manager. Together with a Task Force of other collaborators from CIMMYT, the International Rice Research Institute (IRRI) and IPGRI (now Bioversity International), they drafted and presented a joint proposal to form a CGIAR Challenge Programme – and so GCP was conceived.

The five CGIAR Challenge Programmes were the early precursors of the current CGIAR Research Programs. They introduced a new model for collaboration among CGIAR Research Centers and with external institutes, particularly national breeding programmes in developing countries.

A programme where the spirit is palpable

Photo: N Palmer/CIAT

Failed harvest: this Ghanaian farmer’s maize ears are undersized and poorly developed due to drought.

From the beginning, GCP had collaboration and capacity building at its heart. As encapsulated in its tagline, “partnerships in modern crop breeding for food security,” GCP’s aim was to bring breeders together and give them the tools to more effectively breed crops for the benefit of the resource-poor farmers and their families, particularly in marginal environments.

GCP’s primary focus on was on drought tolerance and breeding for drought-prone farming systems, since this is the biggest threat to food security worldwide – and droughts are already becoming more frequent and severe with climate change. However, the Programme made major advances in breeding for resilience to other major stresses in a number of different crops, including acid soils and important pests and diseases. It also sought improved yields and nutritional quality.

The model for the Programme was that it would work by contracting partner institutes to conduct research, initially through competitive projects and later through commissioning. These partnerships would ensure that GCP’s overall objectives were met. For Dave, GCP set the groundwork for modern plant breeding.

“GCP demonstrated that you can tap into genetic resources and that they can be valuable and can have significant impacts on breeding programmes,” he says.

“I think GCP started to guide the process. Without GCP, the adoption, testing and use of molecular technologies would probably have been delayed.”

Photo: Meena Kadri/Flickr (Creative Commons)

Harvesting wheat in India.

Masa Iwanaga, who is now President of the Japan International Research Center for Agricultural Sciences (JIRCAS), says that the key to the proposal and ultimate success of GCP was the focus on building connections between partners worldwide. “By providing the opportunity for researchers from developed countries to partner with researchers in developing countries, it helped enhance the capacity of national programmes in developing countries to use advanced technology for crop improvement.”

While not all partnerships were fruitful, Jean-Marcel has observed that those participants who invested in partnerships and built trust, understanding and communication produced some of the most successful results. “We created this amazing chain of people, stretching from the labs to the fields,” said Jean-Marcel, discussing the Programme in a 2012 interview.

“Perhaps the best way I can describe it is as a ‘GCP spirit’ created by the researchers we worked with.

“The Programme’s environment is friendly, open to sharing and is marked by a strong sense of community and belonging. The GCP spirit is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

Exploring gene banks to uncover genetic wealth

GCP started operations in 2004 and was designed in two five-year phases, 2004–2008 and 2009–2013. 2014 was a transition year for orderly closure.

Phase I focussed on upstream research to generate knowledge and tools for modern plant breeding. It mainly consisted of exploration and discovery projects, funded on a competitive basis, pursuing the most promising molecular research and high-potential partnerships.

“GCP’s first task was to go in and identify the genetic wealth held within the CGIAR gene banks,” says Dave Hoisington.

Photo: IITA

Gene bank samples give a small snapshot of cowpea diversity.

CGIAR’s gene banks were originally conceived purely for conservation, but breeders increasingly recognised the tremendous value of studying and utilising these collections. Over the years they were able to use gene banks as a valuable source of new breeding material, but were hampered by having to choose seeds almost blindly, with limited knowledge of what useful traits they might contain.

“We realised we could use molecular tools to help scan the genomes and discover genes in crops of interest and related species,” says Dave. “The genes we were most interested in were ones that helped increase yield in harsh environments, particularly under drought.”

By studying the genomes of wild varieties of wheat, for example, researchers found genes that increase wheat’s tolerance of water stress.

Photo: International Potato Center (CIP)

Sweetpotato diversity.

GCP-supported projects analysed naturally occurring genetic diversity to produce cloned genes, informative markers and reference sets for 21 important food crops. ‘Reference sets’, or ‘reference collections’ reduce search time for researchers: they are representative selections of a few hundred plant samples (‘accessions’) that encapsulate each crop’s genetic diversity, narrowed down from the many thousands of gene bank accessions available. The resources developed through GCP have already proved enormously valuable, and will continue to benefit researchers for years to come.

For example, researchers developed 52 new molecular (DNA) markers for sweetpotato to enable marker-assisted selection for resistance to sweet potato virus disease (SPVD). For lentils, a reference set of about 150 accessions was produced, a distillation down to 15 percent of the global collection studied. And for barley, 90 percent of all the different characteristics of barley were captured within 300 representative plant lines.

Photo: ICARDA

Harvesting barley in Ethiopia.

The leader of GCP’s barley research, Michael Baum, who directs the Biodiversity and Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA), says the reference set is a particular boon for a researcher new to barley.

“By looking at 300 lines, they see the diversity of 3,000 lines without any duplication,” says Michael. “This is much better and quicker for a plant breeder.”

Similarly, the lentil reference set serves as a common resource for ICARDA’s team of lentil breeders, facilitating efficient collaboration, according to Aladdin Hamweih of ICARDA, who was charged with developing the lentil collection for GCP.

“These materials can be accessed to achieve farming goals – to produce tough plants suitable for local environments. In doing this, we give farmers a greater likelihood of success, which ultimately leads to improving food security for the wider population,” Aladdin says.

An important aspect of the efforts within Phase I was GCP’s emphasis on developing genomic resources such as reference sets for historically under-resourced crops that had received relatively little investment in genetic research. These made up most of GCP’s target crops, and included: bananas and plantains; cassava; coconuts; common beans; cowpeas; chickpeas; groundnuts; lentils; finger, foxtail and pearl millets; pigeonpeas; potatoes; sorghum; sweetpotatoes and yams.

Although not all of these historically under-resourced crops continued to receive research funding into Phase II, the outcomes from Phase I provided valuable genetic resources and a solid basis for the ongoing use of modern, molecular-breeding techniques. Indeed, thanks to their GCP boost, some of these previously neglected species have become model crops for genetic and genomic research – even overtaking superstar crops such as wheat, whose highly complex genome hampers scientists’ progress.

Photo: N Palmer/CIAT

Banana harvest for sale in Rwanda.

A need to focus and deliver products

“Phase I provided plenty of opportunity for researchers to tap into genetic diversity,” says Jean-Marcel. “We opened the door for a lot of different topics which helped us to identify projects worth pursuing further, as well as identifying productive partnerships. But at the same time, we were losing focus by spreading ourselves too thinly across so many crops.”

This notion was confirmed by the authors of an external review conducted in 2008, commissioned by CGIAR. This recommended consolidating GCP’s research in order to optimise efficiency and increase outputs during GCP’s second phase, while also enhancing potential for longer term impact.

Transparency and a willingness to respond and adapt were always core GCP values. The Programme embraced external review throughout its lifetime, and was able to make dynamic changes in direction as the best ways to achieve impact emerged. Markus Palenberg, Managing Director of the Institute for Development Strategy in Germany, was a member of the 2008 evaluation panel.

“One major recommendation from the evaluation was to focus on crops and tools which would provide the greatest impact in terms of food security,” recounts Markus, who later joined GCP’s Executive Board. “This resulted in the Programme refocusing its research on only nine core crops.” These were cassava, beans, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat.

Photo: Mann/ILRI

Hard work: harvesting groundnut in Malawi.

GCP’s decision-making process on how to focus its Phase II efforts was partly guided by research the Programme had commissioned, documented in its Pathways to impact brief No 1: Where in the world do we start? This took global data on the number of stunted – i.e., severely malnourished – children, as a truer indicator of poverty than a monetary definition, and overlaid it on maps showing where drought was most likely to occur and have a serious impact on crop productivity. This combination of poverty and vulnerable harvests was used to determine the farming systems where GCP might have most impact.

The Programme also attempted to maintain a balance between types of crops, including each of the following categories: cereals (maize, rice, sorghum, wheat), legumes (beans, chickpeas, cowpeas, groundnuts), and roots and tubers (cassava).

The crops were organised into six crop- specific Research Initiatives (RIs) – legumes were consolidated into one – plus a seventh, Comparative Genomics, which focused on exploiting genetic similarities among rice, maize and sorghum to find and deploy sources of tolerance to acid soils.

Photo: IRRI

Child eating rice.

The research under the RIs built on GCP’s achievements in Phase I, moving from exploration to application. The change in focus was underpinned by the planned shift from competitive to commissioned projects, allowing the Programme to continue to support its strongest partnerships and research strands.

“The RIs focused on promoting the use of modern integrated breeding approaches, using both conventional and molecular breeding methods, to improve each crop through a series of specific projects undertaken in more than 30 countries,” says Jean-Marcel. “More importantly, the RIs were focused on creating new genetic material and varieties of plants that would ultimately benefit farmers.”

Such products released on the ground included new varieties of:

  • cassava resistant to several diseases, tolerant to drought, nutritionally enhanced to provide high levels of vitamin A, and with higher starch content for high-quality cassava flour and starch processing
  • chickpea tolerant to drought and able to thrive in semi-arid conditions, already providing improved food and income security for smallholder African farmers  – yields have doubled in Ethiopia – and set to help them supply growing demand for the legume in India
  • maize with higher yields, tolerant to high levels of aluminium in acid soils, resistant to disease, adapted to local conditions in Africa – and with improved phosphorus efficiency in the pipeline
  • rice with tolerance to drought and low levels of phosphorus in acid soils, disease resistance, high grain quality, and tolerance to soil salinity – with improved aluminium tolerance on the way too
Photo: CSISA

Harvesting rice in India.

Over the coming years, many more varieties developed through GCP projects are expected to be available to farmers, as CGIAR Research Centres and national programmes continue their work.

These will include varieties of:

  • common bean resistant to disease and tolerant to drought and heat, with higher yields in drier conditions – due for release in several African countries from 2015 onwards
  • cowpea resistant to diseases and insect pests, with higher yields, and able to tolerate worsening drought – set for release in several countries from 2015, to secure and improve harvests in sub-Saharan Africa
  • groundnut tolerant to drought and resistant to pests, diseases, and the fungi that cause aflatoxin contamination, securing harvests and raising incomes in some of the poorest regions of Africa
  • maize tolerant to drought and adapted to local conditions and tastes in Asia
  • sorghum that is even more robust and adapted to increasing drought in the arid areas of sub-Saharan Africa – plus sorghum varieties able to tolerate high aluminium levels in acid soils, set for imminent release
  • wheat with heat and drought tolerance – as well as improved yield and grain quality – for India and China, the two largest wheat producers in the world
Photo: N Palmer/CIAT

Groundnut harvest, Ghana.

Giving a voice to all the cast and crew

The 2008 external review also recommended slight changes in governance. It suggested GCP receive more guidance from two proposed panels: a Consortium Committee and an independent Executive Board.

Dave Hoisington, who chaired the Committee from 2010, succeeding the inaugural Chair Yves Savidan, explains: “GCP was not a research programme run by a single institute, but a consortium of 18 institutes. By having a committee of the key players in research as well as an independent board comprising people who had no conflict of interest with the Programme, we were able to make sure both the ‘players’ and ‘referees’ were given a voice.”

Jean-Marcel says providing this voice to everyone involved was an important facet of effective management. “Given that GCP was built on its people and partnerships, it was important that we restructured our governance to provide everyone with a representative to voice their thoughts on the Programme. We have always tried to be very transparent.”

The seven-member Executive Board was instated in June 2008 to provide oversight of the scientific strategy of the Programme. Board members had a wide variety of skills and backgrounds, with expertise ranging across molecular biology, development assistance, socioeconomics, academia, finance, governance and change management.

Andrew Bennett, who followed inaugural Chair Calvin Qualset into the role in 2009, has more than 45 years of experience in international development and disaster management and has worked in development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean.

“The Executive Board’s first role was to provide advice and to help the Consortium Committee and management refocus the Programme,” says Andrew.

Photo: IRRI

Rice seed diversity.

‘Advice’ and ‘helping’ are not usually words associated with how a Board works but, like so much of GCP’s ‘family’, this was not a typical board. Because GCP was hosted by CIMMYT, the Board did not have to deal with any policy issues; that was the responsibility of the Consortium Committee. As Andrew explains, “Our role was to advise on and help with decision-making and implementation, which was great as we were able to focus on the Programme’s science and people.”

Andrew has been impressed by what GCP has been able to achieve in its relatively short lifespan in comparison with other research programmes. “I think this programme has demonstrated that a relatively modest amount of money used intelligently can move with the times and help identify areas of potential benefit.”

Developing capacity and leadership in Africa

As GCP’s focus shifted from exploration and discovery to application and impact between Phases I and II, project leadership shifted too. More and more projects were being led by developing-country partners.

Harold Roy-Macauley, GCP Board member and Executive Director of the West and Central African Council for Agricultural Research and Development (WECARD), advised GCP about how to develop capacity, community and leadership among African partners so that products would reach farmers.

“The objective was to make sure that we were influencing development within local research communities,” says Harold. “GCP has played a very important role in creating synergies between the different institutions in Africa. Bringing the right people together, who are working on similar problems, and providing them with the opportunity to lead, has brought about change in the way researchers are doing research.”

In the early years of the Programme, only about 25 percent of the research budget was allocated to research institutes in developing countries; this figure was more than 50 percent in 2012 and 2013.

Jean-Marcel echoes Harold’s comments: “To make a difference in rural development – to truly contribute to improved food security through crop improvement and incomes for poor farmers – we knew that building capacity had to be a cornerstone of our strategy,” he says. Throughout its 10 years, GCP invested 15 percent of its resources in developing capacity.

“Providing this capacity has enabled people, research teams and institutes to grow, thrive and stand on their own, and this is deeply gratifying. It is very rewarding to see people from developing countries growing and becoming leaders,” says Jean-Marcel.

“For me, seeing developing-country partners come to the fore and take the reins of project leadership was one of the major outcomes of the Programme. Providing them with the opportunity, along with the appropriate capacity, allowed them to build their self-confidence. Now, many have become leaders of other transnational projects.”

Emmanuel Okogbenin and Chiedozie Egesi, two plant breeders at Nigeria’s National Root Crops Research Institute (NRCRI), are notable examples. They are leading an innovative new project using marker-assisted breeding techniques they learnt during GCP projects to develop higher-yielding, stress-tolerant cassava varieties. For this project, they are partnering with the Bill & Melinda Gates Foundation, Cornell University in the USA, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crops Resources Research Institute (NaCRRI).

Chiedozie says this would not have been possible without GCP helping African researchers to build their profiles. “GCP helped us to build an image for ourselves in Nigeria and in Africa,” he says, “and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Photo: IITA

Nigerian cassava farmer.

A ‘sweet and sour’ sunset

Photo: Daryl Marquardt/Flickr (Creative Commons)

Maize at sunset.

Jean-Marcel defined GCP’s final General Research Meeting in Thailand in 2014 as a ‘sweet-and-sour experience’.

Summing up the meeting, Jean-Marcel said, “It was sour in terms of GCP’s sunset, and sweet in terms of seeing you all here, sharing your stories and continuing your conversations with your partners and communities.”

From the outset, GCP was set up as a time-bound programme, which gave partners specific time limits and goals, and the motivation to deliver products. However, much of the research begun during GCP projects will take longer than 10 years to come to full fruition, so it was important for GCP to ensure that the research effort could be sustained and would continue to deliver farmer-focused outcomes.

During the final two years of the Programme, the Executive Board, Consortium Committee and Management Team played a large role in ensuring this sustainability through a thoroughly planned handover.

“We knew we weren’t going to be around forever, so we had a plan from early on to hand over the managerial reins to other institutes, including CGIAR Research Programs,” says Jean-Marcel.

One of the largest challenges was to ensure the continuity and future success of the Integrated Breeding Platform (IBP). IBP is a web-based, one-stop shop for information, tools and related services to support crop breeders in designing and carrying out integrated breeding projects, including both conventional and marker-assisted breeding methods.

While there are already a number of other analytical and data management breeding systems on the market, IBP combines all the tools that a breeder needs to carry out their day-to-day logistics, plan crosses and trials, manage and analyse data, and analyse and refine breeding decisions. IBP is also unique in that it is geared towards supporting breeders in developing countries – although it is already proving valuable to a wide range of breeding teams across the world. The Platform is set up to grow and improve as innovative ideas emerge, as users can develop and share their own tools.

Beyond the communities and relationships fostered by GCP community, Jean-Marcel sees IBP as the most important legacy of the Programme. “I think that the impact of IBP will be huge – so much larger than GCP. It will really have impact on how people do their business, and adopt best practice.”

While the sun is setting on GCP, it is rising for IBP, which is in an exciting phases as it grows and seeks long-term financial stability. The Platform is now independent, with its headquarters hosted at CIMMYT, and has established a number of regional hubs to provide localised support and training around the world, with more to follow.

It is envisaged that IBP will be invaluable to researchers in both developing and developed countries for many years to come, helping them to get farmers the crop varieties they need more efficiently. IBP is also helping to sustain some of the networks that GCP built and nurtured, as it is hosting the crop-specific Communities of Practice established by GCP.

2014 may be the end of GCP’s story but its legacy will live on. It will endure, of course, in the Programme’s scientific achievements – for many crops, genetic research and the effective use of genetic diversity in molecular breeding are just beginning, and GCP has helped to kick-start a long and productive scientific journey – and in the valuable tools brought together in IBP. And most of all, GCP’s character, communities and spirit will live on in all those who formed part of the GCP family.

For Chiedozie Egesi, the partnerships fostered by GCP have changed the way he does research: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons.

Fellow cassava breeder Elizabeth Parkes of Ghana agrees that GCP’s impact will be a lasting one: “All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

More links

Photo: E Hermanowicz/Bioversity International

Cowpea seeds dried in their pods.

Oct 192015
 

IBP-logoBy 2050, the global demand for food will nearly double, numbers of farmers are predicted to decrease and the amount of suitable farmland is not expected to expand. To meet these challenges, farmers will rely on plant breeders becoming more efficient at producing crop varieties that are higher yielding and more resilient.

The Integrated Breeding Platform (IBP), established by the CGIAR Generation Challenge Programme (GCP), provides plant breeders with state-of-the-art, modern breeding tools and management techniques to increase agricultural productivity and breeding efficiency. Its work democratises and facilitates the adoption of these tools and techniques across world regions and economies, from emerging national programmes to well-established companies. In particular, it is helping to bridge the technological and scientific gap prevailing in developing countries by providing purpose-built informatics, capacity-building opportunities and crop-specific expertise to support the adoption of best practice by breeders, including the use of molecular technologies. This will help reduce the time and resources required to develop improved varieties for farmers.

IBP is certainly a winner for maize breeder Thanda Dhliwayo of the International Maize and Wheat Improvement Center (CIMMYT): “IBP is the only publicly available integrated breeding data-management system. I see a lot of potential in increasing efficiency and genetic gain of public breeding programmes,” he says.

For Graham McLaren, who was GCP’s Bioinformatics and Crop Information Sub-Programme Leader, an informatics system is vital for advancing the adoption of modern breeding strategies and the use of molecular technologies.

“One of the biggest constraints to the successful deployment of molecular technologies in public plant breeding, especially in the developing world, is a lack of access to informatics tools to track samples, manage breeding logistics and data, and analyse and support breeding decisions,” says Graham, who is now IBP Deployment Manager for Eastern and Southern Africa.

This is why IBP was set up, explains Graham: “We want to put informatics tools in the hands of breeders – be they in the public or private sector, including small- and medium-scale enterprises – because we know they can make a huge difference.”

Breeders access IBP's services through its Web Portal.

Breeders access IBP’s services through its Web Portal.

Handling big data

Knowledge is power, making data are almost a crucial a raw material for plant breeding as seeds. To make good choices about which plants to use, breeders need information from thousands of plant lines about a wide range plant of characteristics, usually collected during field trials or greenhouse experiments, in a process known as phenotyping. Effective information management is therefore critical in the success of a breeding programme. IBP tackles these crucial information management issues, and many of its current users are finding it invaluable for handling their phenotypic data. IBP also aims to facilitate the use of molecular-breeding techniques, which require genetic as well as phenotypic information (see box), and support users in integrating these into their breeding process.

Marker-assisted selection – highlighting genes that control desired traits This technique involves using molecular markers (also known as DNA markers) to flag the presence of specific genes associated with desired traits and trace their descent from one generation to the next. These markers are themselves fragments of DNA that highlight particular genes or genetic regions by binding near them. To use an analogy, think of a story as the plant’s genome: its words are its genes, and a molecular marker works as a text highlighter. Molecular markers are not precise enough to highlight specific words (genes), but they can highlight sentences (genomic regions) that contain them. Plant breeders can generally use molecular markers early in the breeding process to determine whether plants they are developing will have the desired trait.

The advent and implementation of molecular breeding has increased breeders’ efficiency and capacity to generate new varieties – although the inclusion of genetic data has also added to the amount of information that breeders need to handle.

Photo: HarvestPlus

An abundant harvest of nutrient-enriched cassava in Nigeria.

“Prior to molecular breeding, we would record our observations of how plants performed in the field [phenotypic data] in a paper field book; we would either file the book away or re-enter the data into an Excel spreadsheet,” says Adeyemi (Yemi) Olojede, Assistant Director and Coordinator in charge of the Cassava Research Programme at the National Root Crops Research Institute (NRCRI) in Nigeria and Crop Database Manager for NRCRI’s GCP-funded projects.

“We still need to phenotype, but molecular-breeding techniques allow us to select for plant characteristics early in the breeding process by analysing the plant’s genotype to see if it has genes associated with desirable traits,” says Yemi. Groundwork is needed in order to make this possible: “This means we need to analyse the data of each plant’s genetic make-up as well as the phenotypic data so we can verify whether certain genes are responsible for the traits we observe.”

By using molecular markers to make certain which plants have useful genes right from the start  – simply by testing a tiny bit of seed or seedling tissue – breeders and agronomists like Yemi can carefully select which ‘parent’ plants to use. These are then crossed in just the same way as in conventional breeding, but using only the most promising parents makes each generation is a much bigger step forward. Another advantage for breeders is that they do not necessarily have to grow all of the progeny from each set of crosses – usually thousands – all the way to maturity to see which plants have inherited the traits they are interested in.

The IBP Breeding Management System makes it much easier for breeders to manage their data and make good use of both phenotypic and genotypic information. The Crossing Manager function facilitates the planning and tracking of crosses.

The IBP Breeding Management System makes it much easier for breeders to manage their data and make good use of both phenotypic and genotypic information. The Crossing Manager function facilitates the planning and tracking of crosses.

All of this makes breeding more efficient, reducing the time and cost associated with field trials and cutting the cumulative time it takes to breed new varieties by half or more. The end result is that farmers get the new crop varieties they need more quickly.

Keeping track of masses of information has always been a headache for breeders. However, the increased burden of data management that molecular breeding brings – together with the need to be able to carry out specialised genotypic analysis (study of the genetic make-up of an organism) – has proved to be a limitation for many public national breeding programmes such as NRCRI. These have consequently struggled to adopt molecular-breeding techniques as readily as the private sector.

Wanting to overcome this limitation as part of its mission to advance plant science and improve crops for greater food security in the developing world, in 2009 GCP gave Graham McLaren the momentous task of overseeing the development of the Integrated Breeding Platform.

Clearing the bottleneck

The IBP Web Portal provides information and access to services and crop-specific community spaces. These help breeders design and carry out integrated breeding projects, using conventional breeding methods combined with and enhanced by marker-assisted selection methods. The Portal also provides access to downloadable informatics tools, particularly the Breeding Management System (BMS).

While there are multiple analytical and data-management systems on the market for plant breeders, what sets the BMS apart is its availability to breeders in developing countries and its integrated approach. Within a single software suite, breeders are able to manage all their activities, from choosing which plants to cross to setting up field trials.

Graham explains that IBP has brought together all the basic tools that a breeder needs to carry out day-to-day logistics, data management and analysis, and decision support. “We’ve worked with different breeders to develop a whole suite of tools – the BMS – that can be configured to support their various needs,” explains Graham. “Having all the tools in one place allows breeders to move from one tool to the next during their breeding activities, without complex data manipulation. We’ve also set up the system for others to develop and share their tools, so that it can continue to grow with new innovative ideas.”

The IBP Breeding Management System has a complete range of interconnected tools. The Germplasm Lists Manager supports breeders in managing their sets of breeding materials.

The IBP Breeding Management System has a complete range of interconnected tools. The Germplasm Lists Manager supports breeders in managing their sets of breeding materials.

Another feature of the Platform is that it provides breeders with access to genotyping services to allow them to do marker-assisted breeding. This is particularly useful for breeders in developing countries, who often don’t have the capacity to do this work. “It’s about giving all breeders the opportunity to enhance the way they do their job, without breaking the budget,” says Graham.

A unique and holistic component of IBP is the Platform’s community-focused tools. “IBP is as much about sharing knowledge as it is about managing data,” says Graham. “We’ve integrated social media to allow anybody with an interest in breeding, say, cowpeas, to join the cowpea community. They needn’t necessarily be a collaborator; they just have to have an interest in breeding cowpeas. They could read about what’s going on, contact people in the community and say ‘I’ve seen results for your trial. Could you send me some seed because I think it will do well in my region?’ or ‘Could you please further explain the breeding method you used?’ That’s what we hope to inspire with those communities.”

Graham concedes that this aspiration for the Platform has not yet been fully realised. However, he is hopeful that by providing training, coupled with the support from several key institutes and breeders, these communities will help to increase adoption of IBP and its tools.

“We are well aware that this Platform will be a big step for a lot of breeders out there, and they will need to invest time and patience into learning how to adapt it to their circumstances,” says Graham. “However, this short-term investment will save them time and money in the long term by making their process a lot more efficient.”

For Guoyou Ye, a senior scientist with the International Rice Research Institute (IRRI), participating in IBP meant that he has gained a lot more understanding about the needs of breeders in developing countries for user-friendly tools.

“I started to spend time doing something for the resource-poor breeders. This has resulted in many invitations by breeding programmes in different countries to conduct training, and has given me a chance to establish a network for future work. I also had the chance to work with internationally well-known scientists and informatics specialists,” he says.

Photo: N Palmer/CIAT

Freshly threshed rice in India.

Providing help where it is needed

Yemi Olojede is another person who has been championing IBP, and his focus has been in Nigeria and other African countries. He spent time at GCP’s headquarters in Mexico in 2012 to sharpen his data-management skills and provide user insights on the cassava database. “I enjoy working with the IBP team,” says Yemi. “They pay attention to what we [agronomists and breeders] want and are determined to resolve the issues we raise.”

Yemi has also helped the IBP team run workshops for plant breeders throughout Africa.

He recounts that attendees were always fascinated by IBP and the BMS, but cautious about the effort required to learn how to use it. They were pleased, though, when they received step-by-step ‘how to’ manuals to help them train other breeders in their institutes, with additional support to be provided by IBP or Yemi’s team in Nigeria.

“We told them if they had any challenges, they could call us and we would help them,” says Yemi. “I feel this extra support is a good thing for the future of this project, as it will build confidence in the people we teach. They can then go back to their research institutes and train their colleagues, who are more likely to listen and learn from them than from someone else.”

IBP is continuing to run these training courses, through newly established regional hubs in Africa and Asia.

Breeders and researchers rate the Integrated Breeding Platform (IBP) “IBP is an important tool in current and future enhancement of national breeding programmes.” –– Hesham Agrama, Soybean Breeder, International Institute of Tropical Agriculture, Zambia “The tools being developed with IBP will form the basis of crop information management at the Semiarid Prairie Agricultural Research Centre [SPARC] and other Agriculture and Agri-Food Canada research centres.” –– Shawn Yates, Quantitative Genetics Technician, SPARC, Canada  “We have successfully integrated IBP with our lentil programme and also included IBP in the training that we conduct regularly for the benefit of our partners in national agricultural research systems.” –– Shiv Agrawal, lentil breeder, International Center for Agricultural Research in the Dry Areas, Syria “Our institute has embraced use of the Breeding Management System and IBP, and we are already seeing results in improved data management within the Seed Co group research function.” –– Lennin Musundire, senior maize breeder, Seed Co Ltd, Zimbabwe

Mark Sawkins, IBP Deployment Manager for West and Central Africa, is helping to coordinate the formation and integration of the regional hubs within key agricultural institutes, including the Africa Rice Center in Benin, Biosciences Eastern and Central Africa (BecA) in Kenya, Centre d’étude régional pour l’amélioration de l’adaptation à la sécheresse (CERAAS) in Senegal, the Chinese Academy of Agricultural Sciences (CAAS) in China, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in India, the International Institute of Tropical Agriculture (IITA) in Nigeria, and the National Center for Genetic Engineering and Biotechnology (BIOTEC) in Thailand. Several further hubs are planned in additional countries, including in Latin America.

He says the hubs provide localised support in the use of IBP tools: “Their role is to champion IBP in their region,” says Mark. “They can take advantage of their established relationships and skills to help new users adopt the Platform. This includes providing education and training, technical support for IBP tools, and encouraging users to build their networks through the crop communities.”

IBP Regional Hubs worldwide.

IBP Regional Hubs worldwide.

Breeding rice and maize more efficiently using IBP

For Mounirou El-Hassimi Sow, a rice breeder from the Africa Rice Center, IBP is more than just a tool that helps him manage his data: “I’m seeing the whole world of rice breeders as a small village where I can talk to everyone,” he says.

“Through IBP, I have access to this great network of people, who I would never have met, who I can refer to when I have some challenges.”

Social networking tools are a novel feature incorporated into IBP to further develop the capacity of breeders like Mounirou. IBP hosts a number of crop-based and technical Communities of Practice that were established by GCP. These have nurtured relationships between breeders across different countries and organisations, encouraging knowledge sharing and support for young scientists.

Another way GCP has promoted and developed capacity to use IBP and molecular-breeding techniques is through training. Starting in April 2012, the Integrated Breeding Multiyear Course (IB–MYC) trained 150 plant breeders and technicians from Africa and Asia. The participants attended three two-week intensive face-to-face training workshops spread over three years, with assignments and ongoing support between sessions.

Photo: V Boire/IBP

Roland Bocco (Africa Rice center, Benin), Dinesh K. Agarwal (ICAR, India) and Susheel K. Sarkar (ICAR, India) work together on a statistics assignment during their final workshop of the Integrated Breeding Multiyear Course (IB–MYC).

Mounirou participated in the course and says it provided him with the opportunity to learn more about molecular breeding and practice using the associated management and data analysis tools. “I had learnt about the tools in university and seen them on the Internet, but I did not know how to use them,” says Mounirou. “During the first year, we learnt about the theory and how the tools work. During the second and third years, we were comfortable enough with the tools to use our own data and troubleshoot this with the tutors. This was great and provided me with confirmation that these tools were applicable and useful for my work.”

Mounirou says he is now sharing what he learnt during the course with his co-workers and other plant breeders in Africa. “Since the Africa Rice Center became a regional hub for IBP, I’ve volunteered to help train rice breeders. It’s great to be able to share what I learnt and help them realise how this tool will help make their work so much easier.”

Photo: CIMMYT

A maize farmer and community-based seed producer in Kenya.

Another IB–MYC trainee, Murenga Geoffrey Mwimali, a maize breeder from the Kenya Agriculture and Livestock Research Organisation (KALRO), is also helping his networks to benefit from IBP. “When I returned from the training, I took the initiative to demonstrate the Platform to the management of my organisation, to show them that it is what we need to implement at the institute level. They were overwhelmingly positive, and we are working on running a training course for other researchers in the organisation to learn how to use the Platform.”

Jean-Marcel Ribaut, GCP and IBP Director, says these championing efforts are exactly what GCP and IBP were hoping IB–MYC would initiate. “By providing this initial intensive training to these selected participants, we felt this groundswell of capacity would slowly grow once they built their confidence,” says Jean-Marcel. “That young researchers like these feel they are competent and obligated to share what they learnt is a true credit to the product and the participants.”

From the GCP nest to world-scale deployment

IBP has been the single largest GCP investment. From 2009 to 2014, GCP allocated USD 22 million to the initiative, with financial support from the Bill & Melinda Gates Foundation, the European Commission, the UK Department for International Development, CGIAR and the Swiss Agency for Development and Cooperation. This represented 15 percent of GCP’s entire budget.

Following GCP’s close in December 2014, IBP will continue to develop and improve over the next five years, with funding primarily originating from the Bill & Melinda Gates Foundation. While the priority has been on informatics and service development in Phase I, the main focus of Phase II will be to concentrate on deployment and adoption. In the long term, the Platform is seeking further ongoing funding, and also looking into implementing some form of user-contribution for specialised or consulting services.

“We wanted to develop a tool to provide developing countries with access to modern breeding technologies, breeding materials and related information in a centralised and practical manner, which would help them adopt molecular-breeding approaches and improve their plant-breeding efficiency,” says Jean-Marcel. “I believe we have achieved this and at the same time built a tool that will prove very useful for commercial companies too. If we want the tool to continue to be affordable and sustainable for developing countries, then we have to look at ways of finding new sources of funding and of making revenue to offset the costs.”

Stewart Andrews, IBP Business Manager, is helping to make this happen.

“What we are looking at is a tiered membership system in the private sector, where enterprises would pay more the larger they are,” explains Stewart. “This would also be dependent on where in the world they are, with enterprises in Europe and North America contributing proportionately more financially than those in developing countries. This will help us to continue investing in our solutions while keeping them accessible to national programmes and universities in developing countries at little to no fee.”

For Jean-Marcel, creating a commercial stream for IBP services is a win for all parties. “If we are able to generate revenue we can not only provide sustainable support and offset the cost for poorer institutes, we can also continue to develop and improve the BMS software suite so that it becomes the tool of choice all over the world. In terms of social responsibility, the corporate world can play an essential role in this not only as donors but even more effectively as clients and users – adopting the BMS makes good business sense.”

Stewart says a sustainable income is vital for providing training and assistance. “We currently have about 7,000 researchers in the developing world who get this software for free, and each week we get 20–25 requests for help, assistance and training. This support costs money but is indispensable, particularly for those in the developing world who are trying to implement molecular breeding for the first time. You have to remember that this software is all part of a revolution in terms of plant breeding, so we need to provide as much assistance as we can if these breeders are going to buy into molecular breeding and all of its benefits.”

The IBP team is convinced that rolling out IBP will have a significant impact on plant breeding in developing countries.

Indeed, so far there have been more than 1,300 unique downloads of the BMS, with at least 250 early adopters worldwide using the software suite across their day-to-day breeding activities. The Platform’s strategy now builds on three regional teams (West and Central Africa, Eastern and Southern Africa, and South and South East Asia), each including experienced breeders and data managers. With the help of local representatives at seven well-established Regional Hubs to date (with more Hubs in development), this strategy has thus far yielded commitments from six African countries at the national level; from 24 Institutes spanning 58 breeding programmes at different stages of the adoption process; from 14 Universities where faculty members are using and/or teaching the BMS, partially or entirely; and from 134 “champions” engaged in the deployment plans and in supporting their peers.

“Because IBP has a very wide application, it will speed up crop improvement in many parts of the world and in many different environments. What this means is that new crop varieties will be developed in a more rapid and therefore more efficient manner,” concludes Graham.

More links

Sep 282015
 

 

Photo: Agência BrasíliaSorghum is already a drought-hardy crop, and is a critical food source across Africa’s harsh, semi-arid regions where water-intensive crops simply cannot survive. Now, as rainfall patterns become increasingly erratic and variable worldwide, scientists warn of the need to improve sorghum’s broad adaptability to drought.

Crop researchers across the world are now on the verge of doing just that. Through support from the CGIAR Generation Challenge Programme (GCP), advanced breeding methods are enhancing the capacity of African sorghum breeders to deliver more robust varieties that will help struggling farmers and feed millions of poor people across sub-Saharan Africa.

Photo: ICRISAT

A farmer in her sorghum field in Tanzania.

Sorghum at home in Africa

From Sudanese savannah to the Sahara’s desert fringes, sorghum thrives in a diverse range of environments. First domesticated in East Africa some 6000 years ago, it is well adapted to hot, dry climates and low soil fertility, although still depends on receiving some rainfall to grow and is very sensitive to flooding.

In developed countries such as Australia, sorghum is grown almost exclusively to make feed for cattle, pigs and poultry, but in many African countries millions of poor rural people directly depend on the crop in their day-to-day lives.

Photo: ICRISAT

A Malian woman and her child eating sorghum.

In countries like Mali sorghum is an important staple crop. It is eaten in many forms such as couscous or (a kind of thick porridge), it is used for making local beer, and its straw is a vital source of feed for livestock.

While the demand for, and total production of, sorghum has doubled in West Africa in the last 20 years, yields have generally remained low due to a number of causes, from drought and problematic soils, to pests and diseases.

“In Mali, for instance, the average grain yield for traditional varieties of sorghum has been less than one tonne per hectare,” says Eva Weltzein-Rattunde, Principal Scientist for Mali’s sorghum breeding programme at the International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT).

In a continued quest to integrate ways to increase productivity, GCP launched its Sorghum Research Initiative (RI) in 2010. This aimed to investigate and apply the approaches by which genetics and molecular breeding could be used to improve sorghum yields through better adaptability, particularly in the drylands of West Africa where cropping areas are large and rainfall is becoming increasingly rare.

Kick starting the work was a GCP-funded collaboration between project Principal Investigator Niaba Témé, plant breeder at Mali’s Institut d’économie rurale (IER) and the RI’s Product Delivery Coordinator Jean-François Rami of the Centre de coopération internationale en recherche agronomique pour le développement (CIRAD; Agricultural Research for Development), France, with additional support from the Syngenta Foundation for Sustainable Agriculture in Switzerland.

The collaboration aimed to develop ways to improve sorghum’s productivity and adaptation in the Sudano-Sahelian zone, starting with Mali in West Africa, and expanding later across the continent to encompass Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Photo: F Noy/UN Photo

A farmer harvest sorghum in Sudan.

Sorghum gains from molecular research

Since 2008, with the help of CIRAD and Syngenta, Niaba and his team at IER have been learning how to use molecular markers to develop improved sorghum germplasm through identifying parental lines that are more tolerant and better adapted to the arid and volatile environments of Mali.

The two breeding methods used in the collaboration are known as marker-assisted recurrent selection (MARS) and backcross nested association mapping (BCNAM).

MARS

Photo: N Palmer/CIAT“MARS identifies regions of the genome that control important traits,” explains Jean-François. “It uses molecular markers to explore more combinations in the plant populations, and thus increases breeding efficiency.”

Syngenta, he explains, became involved through its long experience in implementing MARS in maize.

“Syngenta advised the team on how to conduct MARS and ways we could avoid critical pitfalls,” he says. “They gave us access to using the software they have developed for the analysis of data, and this enabled us to start the programme immediately.”

With the help of the IER team, two bi-parental populations from elite local varieties were developed, targeting two different environments found in sorghum cropping areas in Mali. “We were then able to use molecular markers through MARS to identify and monitor key regions of the genome in consecutive breeding generations,” says Jean-François.

“When we have identified the genome regions on which to focus, we cross the progenies and monitor the resulting new progenies,” he says. “The improved varieties subsequently go to plant breeders in Mali’s national research program, which will later release varieties to farmers.”

Jean-François is pleased with the success of the MARS project so far. “The development of MARS addressed a large range of breeding targets for sorghum in Mali, including adaptation to the environment and grain productivity, as well as grain quality, plant morphology and response to diseases,” he says. “It proved to be efficient in elucidating the complex relationships between the large number of traits that the breeder has to deal with, and translating this into target genetic ideotypes that can be constructed using molecular markers.”

Jean-François says several MARS breeding lines have already shown superior and stable performance in farm testing as compared to current elite lines, and these will be available to breeders in Mali in 2015 to develop new varieties.

Photo: ICRISAT

Eva Weltzein-Rattunde examines sorghum plants with farmers in Mali.

BCNAM

Like MARS, the BCNAM approach shows promise for being able to quickly gain improvements in sorghum yield and adaptability to drought, explains Niaba, who is Principal Investigator of the BCNAM project. BCNAM may be particularly effective, he says, in developing varieties that have the grain quality preferences of Malian farmers, as well as the drought tolerance that has until now been unavailable.

“BCNAM involves using an elite recurrent parent that is already adapted to local drought conditions, then crossing it with several different specific or donor parents to build up larger breeding populations,” he explains. “The benefit of this approach is it can lead to detecting elite varieties much faster.”

Eva and her team at ICRISAT have also been collaborating with researchers at IER and CIRAD on the BCNAM project. The approach, she says, has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to poor soil fertility conditions.

“We don’t have these types of molecular-breeding resources available in Mali, so it’s really exciting to be a part of this project,” she says. “Overall, we feel the experience is enhancing our capacity here, and that we are closer to delivering more robust sorghum varieties which will help farmers and feed the ever-growing population in West Africa.”

Indeed, during field testing in Mali, BCNAM lines derived from the elite parent variety Grinkan have produced more than twice the yields of Grinkan itself. As they are rolled out in the form of new varieties, the team anticipates that they will have a huge positive impact on farmers’ livelihoods.

Photo: E Weltzein-Rattunde/ICRISAT

Malian sorghum farmers.

Mali and Queensland similar problem, different soil

In Mali and the wider Sahel region within West Africa, cropping conditions are ideal for sorghum. The climate is harsh, with daily temperatures on the dry, sun-scorched lower plains rarely falling below 30°C. With no major river system, the threat of drought is ever-present, and communities are entirely dependent on the 500 millimetres of rain that falls during the July and August wet season.

“All the planting and harvesting is done during the rainy season,” says Niaba. “We have lakes that are fed by the rain, but when these lakes start to dry up farmers rely mostly on the moisture remaining in the soil.”

Over 17 thousand kilometres to the east of Mali, in north-eastern Australia’s dryland cropping region, situated mainly in the state of Queensland, sorghum is the main summer crop, and is considered a good rotational crop as it performs well under heat and moisture stress. The environment here is similar to Mali’s, with extreme drought a big problem.

Average yields for sorghum in Queensland are double those in Mali—around two tonnes per hectare—yet growers still consider them low, directly limited by the crop’s predominantly water-stressed production environment in Australia.

One of the differentiating factors is soil. “Queensland has a much deeper and more fertile soil compared to Mali, where the soil is shallow, with no mulch or organic matter,” says Niaba. “Also, there is no management at the farm level in Mali, so when rain comes, if the soil cannot take it, we lose it.”

Photo: Bart Sedgwick/Flickr (Creative Commons)

Sorghum in Queensland, Australia.

Making sorghum stay green, longer

Another key reason for the difference in yields between Queensland and Mali is that growers in Queensland are sowing a sorghum variety of with a genetic trait that makes it more tolerant to drought.

This trait is called ‘stay-green’, and over the last two decades it has proven valuable in increasing sorghum yields, using less water, in north-eastern Australia and the southern United States.

Stay-green allows sorghum plants to stay alive and maintain green leaves for longer during post-flowering drought—that is, drought that occurs after the plant has flowered. This means the plants can keep growing and produce more grain in drier conditions.

“We’ve found that stay-green can improve yields by up to 30 percent in drought conditions with very little downside during a good year,” says Andrew Borrell from the Queensland Alliance for Agriculture and Food Innovation (QAAFI) at the University of Queensland (UQ) in Australia.

“Plant breeders have known about stay-green for some 30 years,” he says. “They’d walk their fields and see that the leaves of certain plants would remain green while others didn’t. They knew it was correlated with high yield under drought conditions, but didn’t know why.”

Stay-green’s potential in Mali

With their almost 20 years working on understanding how stay-green works, Andrew and his colleagues at UQ were invited by GCP in 2012 to take part in the IER/CIRAD collaborative project, to evaluate the potential for introducing stay-green into Mali’s local sorghum varieties and enriching Malian pre-breeding material for the trait.

A pivotal stage in this new alliance was a 12-month visit to Australia by Niaba and his IER colleague Sidi Coulibaly, to work with Andrew and his team to understand how stay-green drought resistance works in tall Malian sorghum varieties.

“African sorghum is very tall and sensitive to variation in day length,” explains Andrew. “We have been looking to investigate if the stay-green mechanism operates in tall African sorghums (around four metres tall) in the same way that it does in short Australian sorghum (one metre tall).”

Having just completed a series of experiments at the end of 2014, the UQ team consider their data as preliminary at this stage. “But it looks like we can get a correlation between stay-green and the size and yield of these Malian lines,” says Andrew. “We think it’s got great potential.”

Photo: S Sridharan/ICRISAT

Sorhum growing in Mozambique.

Sharing knowledge as well as germplasm

Eva Weltzein-Rattunde has played more of an on-the-ground capacity development role in Mali since accepting her position at ICRISAT in 1998. She says “the key challenges have been improving the infrastructure of the national research facilities [in Mali] to do the research as well as increasing the technical training for local agronomists and researchers.”

Photo: ICRISAT

A Malian farmer harvests Sorghum.

A large part of GCP’s focus is building just such capacity among developing country partners to carry out crop research and breeding independently in future, so they can continue developing new varieties with drought adaptation relevant to their own environmental conditions.

A key objective of the IER team’s Australian visit was to receive training in the methods for improving yields and drought resistance in sorghum breeding lines from both Australia and Mali.

“We learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology, plus a lot more,” says Niaba. This training complemented previous training Niaba and IER researchers had from CIRAD and ICRISAT through the MARS and BCNAM projects.

“We [CIRAD] have a long collaboration in sorghum research in Mali and training young scientists has always been part of our mission,” says Jean-François. “We’ve hosted several IER students here in France and we are always interacting with our colleagues in Mali either over the phone or travelling to Mali to give technical workshops in molecular breeding.”

Photo: Rita Willaert/Flickr (Creative Commons)

Harvested sorghum in Sudan.

Working together to implement MARS in the sorghum breeding program in Mali represented many operational challenges, Jean-François explains. “The approach requires a very tight integration of different and complementary skills, including a strong conventional breeding capacity, accurate breeders’ knowledge, efficient genotyping technologies, and skills for efficient genetic analyses,” he says.

Because of this requirement, he adds, there are very few reported experiences of the successful implementation of MARS.  It is also the reason why these kinds of projects would normally not be undertaken in a developing country like Mali, but for the support of GCP and the dedicated mentorship of Jean-François.

sorghum quote 2“GCP provided the perfect environment to develop the MARS approach,” says Jean-François. “It brought together people with complementary skills, developed the Integrated Breeding Platform (IPB), and provided tools and services to support the programme.”

In addition to developing capacity, Jean-François says one of the great successes of both the MARS and the BCNAM projects was how they brought together Mali’s sorghum research groups working at IER and ICRISAT in a common effort to develop new genetic resources for sorghum breeding.

“This work has strengthened the IER and ICRISAT partnerships around a common resource. The large multiparent populations that have been developed are analysed collectively to decipher the genetic control of important traits for sorghum breeding in Mali,” says Jean-François. “This community development is another major achievement of the Sorghum Research Initiative.” The major challenge, he adds, will be whether this community can be kept together beyond GCP.

Considering the numerous ‘non-GCP’ activities that have already been initiated in Africa as a result of the partnerships forged through GCP research, Jean-François sees a clear indication that these connections will endure well beyond GCP’s time frame.

GCP’s sunset is Mali’s sunrise

Photo: S Sridharan/ICRISAT

Sorghum at sunset in Mozambique.

Among the new activities Jean-François lists are both regional and national projects aimed at building on what has already been achieved through GCP and linking national partners together. These include the West African Agricultural Productivity Program (WAAPP), the West Africa Platform being launched by CIRAD as a continuation of the MARS innovation, and another MARS project in Senegal and Niger through the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet at Kansas State University.

“These are all activities which will help maintain the networks we’ve built,” Jean-François says. “I think it is very important that these networks of people with common objectives stick together.”

sorghum quoteFor Niaba, GCP provided the initial boost needed for these networks to emerge and thrive. “We had some contacts before, but we didn’t have the funds to really get into a collaboration. This has been made possible by GCP. Now we’re motivated and are making connections with other people on how we can continue working with the material we have developed.”

“I can’t talk enough of the positive stories from GCP,” he adds. “GCP initiated something, and the benefits for me and my country I cannot measure. Right now, GCP has reached its sunset; but for me it is a sunrise, because what we have been left with is so important.”

More links

Photo: ICRISAT

A sorghum farmer in her field in Tanzania.

Mar 262015
 

 

Photo: R Cheung/Flickr

Wheat growing in China.

For as long as peoples and countries have traded wheat, drought has continually played a part in dictating its availability and price. Developed countries have become more able to accommodate the bad years by using intensive agricultural practices to grow and store more wheat during more favourable years. However, farmers, traders and consumers are still at the mercy of drought when it comes to wheat availability and prices.

A recent example where drought in just one country inflated the world’s wheat prices was in the People’s Republic of China during 2010–11.

For almost six months, eight provinces in the north of China received little to no rain. Known as the breadbasket of China, these eight provinces grow more than 80 percent of the country’s total wheat and collectively produce more wheat than anywhere else in the world.

It was the worst drought to hit the provinces in 60 years.

With over 1.3 billion mouths to feed, China’s demand for wheat is high and ever increasing. When this demand was coupled with the reduced wheat yield caused by the severe 2010–11 drought, wheat prices around the world rose. While this price rise was beneficial for wheat growers in other countries, it made wheat unaffordable for many consumers and traders in developing nations.

Although this was a one-in-60-year event, previous droughts had already made locals question the sustainability of wheat production in this naturally dry region of China, where water consumption has increased in the past 50 years due to intensive agriculture, industry and a growing and increasingly urbanised population.

Wheat growers and breeders know they need to find wheat varieties and apply practices that will help them adapt to and tolerate drier conditions and still produce sustainable yields.

Luckily, they have help from a community of breeders around the world.

Photo: E Zotov/Flickr

An Uyghur baker displays his bread in Kashi, Xinjiang, China.

Sharing knowledge to improve breeding efficiency and sustainability

In March 2009, 70 international plant breeding leaders and experts from the public and private sector converged in Montpellier, France, as part of a CGIAR Generation Challenge Programme (GCP) initiative to draw up roadmaps to improve plant-breeding efficiency in developing countries.

Richard Trethowan, professor in plant breeding at the University of Sydney, Australia, remembers the meeting distinctly. “We all got together and thought how we could use what we had learnt during the first phase of GCP [2004–2009] – all the genetics and molecular-breeding work – to deliver new varieties of crops, particularly in countries where it will have the greatest impact.”

The resulting roadmap for wheat became the GCP Wheat Research Initiative (RI), with Richard as Product Delivery Coordinator. It had two very clear destinations in mind: China and India.

Richard explains why China and India were targeted – as the world’s two wheat-production giants – in the video below.


Wheat Research Initiative developed capacity and infrastructure in China and India The Wheat RI aimed to integrate genetic diversity for water-use efficiency and heat tolerance into Chinese and Indian breeding programmes. Some aspects of the RI sprang from work led by Francis Ogbonnaya of the International Center for Agricultural Research in the Dry Areas (ICARDA) and by Peter Langridge of the Australian Centre for Plant Functional Genomics (ACPFG). Jean-Marcel Ribaut, GCP Director, says of the work: “The GCP’s RI approach was not about large impacts in the short term. Rather, what GCP demonstrated was definitive proof-of-concept of the power of molecular breeding to increase crop productivity, thereby improving food security. Other agencies are now able to upscale and outscale the proven concept at the national, or even at the regional level.”

Like China, India is an extremely water-stressed country, with the water table in many places falling at an alarming rate. In North Gujarat alone, an established wheat district in western India, the water table is reported to be dropping by as much as six metres per year.

Delivering wheat varieties that have improved water-use efficiency and higher tolerance to drought will have the greatest impact in these countries, given they are the two largest producers of wheat worldwide.

“Even though the Initiative is set to conclude in 2015, the outcomes have already been absolutely phenomenal for such a short time-bound project, given that wheat is such a complex plant to work with,” exclaims Richard. “While we are still a few years away from releasing new drought-tolerant varieties, we have been able to develop systems and build capacity to reduce the time it takes to develop and release these varieties.”

Tapping into genetic diversity to enhance wheat’s drought and heat tolerance

Photo: Rasbak/Wikimedia Commons

Spikes of emmer wheat.

One project that impressed Richard was that led by Satish Misra, GCP Principal Investigator and senior wheat breeder at Agharkar Research Institute, Pune, India.

In a collaboration with the University of Sydney, Australia, and the International Maize and Wheat Improvement Center (CIMMYT), the project identified novel genes associated with drought- and heat-tolerance traits in ancestral wheat lines (of emmer wheat).

Emmer wheat is a minor crop grown mainly in marginal lands, where farmers can produce a small harvest but nowhere near the yield of more elite cultivated lines. Satish explains that emmer wheat lines are very useful for breeders because they have a larger diversity of novel genes than more popular wheat types, such as durum or bread wheat.

Photo: X Fonseca/CIMMYT

Durum wheat spike.

“Durum lines are more commonly used by breeders because of their high yield and hard grain, which is used to make bread wheat and pasta,” Satish says. “However, because of their popularity and continual use in breeding, durum wheat lines have become less and less diverse with years of cultivation.”

The first task was to identify emmer lines that might have genes for drought and heat tolerance. Satish says that CIMMYT played an important part in this process. “They gave us access to their gene bank, which contains almost 2,000 emmer lines. More importantly, they helped us develop a reference set that encapsulated all the diversity found in the emmer lines they had.”

A reference set reduces the number of choices that breeders have to search through, from thousands down to a few hundred – in this case, 300 emmer lines.

“CIMMYT also developed 30 synthetic emmer wheat lines by crossing wild emmer wheat species with domesticated wheat species,” says Satish. “The synthetic lines contain the novel drought- and heat-tolerance genes.”

Satish and Richard’s teams crossed these synthetic lines with durum wheat lines and identified 41 resulting lines with high levels of stress tolerance. These are undergoing further evaluation in India and Australia.

“What Satish has been able to do in five years is amazing and is currently having a big impact in wheat breeding in India and Australia,” says Richard. “We’ve had local breeding companies here in Australia come to us requesting the lines we developed. The same is happening in India, too.”

Reaping existing skills  For Richard, the preliminary success of the Wheat RI is due, at least in part, to the speed with which national breeding programmes in both China and India are learning and incorporating new molecular-breeding techniques. “This was another reason why we chose to focus on China and India: they had the infrastructure and human capacity to start doing this almost immediately,” says Richard. “In other countries where GCP is investing, more time is going into teaching breeders the basics of molecular breeding and genetics. In China and India, they already have that basic understanding and are able to quickly incorporate it into their current programmes.”

Reaping existing skills

Photo: R Pamnani/Flickr

A baker butters naan bread in Hyderabad, India.

For Richard, the preliminary success of the Wheat RI is due, at least in part, to the speed with which national breeding programmes in both China and India are learning and incorporating new molecular-breeding techniques.

“This was another reason why we chose to focus on China and India: they had the infrastructure and human capacity to start doing this almost immediately,” says Richard. “In other countries where GCP is investing, more time is going into teaching breeders the basics of molecular breeding and genetics. In China and India, they already have that basic understanding and are able to quickly incorporate it into their current programmes.”

This does not mean, however, that the work is not focused on building capacity, given that molecular breeding is still a relatively new concept for many breeders around the world.

Ruilian Jing says the China project is continually working to educate and train wheat breeders in molecular-breeding techniques.

“When we started the project, we found that most institutions that focus on wheat breeding in China had the equipment to do marker-assisted breeding but were unsure how to use it,” says Ruilian, professor in plant breeding at the Chinese Academy of Agricultural Sciences (CAAS) and Principal Investigator for the Wheat RI’s drought-tolerant wheat project in China.

Much of Ruilian’s work in China has been in educating these breeders so they can start achieving outcomes.

Younger researchers taking a lead

Ruilian explains that those leading the charge to become educated in molecular-breeding techniques are young researchers, including seven PhD students and one Master’s student supported by the project in China.

One such researcher who is enthusiastically applying these new approaches is Yonggui Xiao, a molecular plant breeder at the Institute of Crop Science, CAAS.

“Working as part of this GCP project gave me my first opportunity to practice using molecular-breeding techniques to improve the quality and yield of wheat under drought conditions,” says Yonggui.

“We have so far successfully used several molecular markers to produce an advanced variety, with higher yield and preferred qualities [taste, grain colour] under water stress, and this will be released to farmers [in 2015].”

Photo: R Saltori/Flickr

Women of the Nakhi people harvest wheat in Songzanlinsi, Yunnan, China.

Yonggui is now expanding the application of the technology to develop varieties with resistance to powdery mildew, a fungal disease that can reduce wheat yields and quality during non-drought years. “Overall, we have been impressed by how these new techniques complement our conventional breeding techniques to improve selection efficiency, in turn reducing the time and costs of producing advanced varieties,” says Yonggui.

Success stories like these make Ruilian’s job easier as she tries to encourage more and more plant breeders to experiment with these new breeding techniques.

At the same time, she is impressed by this new generation of molecular wheat breeders who will ensure that these techniques benefit wheat research in many years to come: “This form of capacity, the human capacity, which we are building, is what will leave the largest legacy in China and help this technology spread from generation to generation and crop to crop.”

Overcoming complex traits, genes and wary breeders

Photo: CCAFS

Wheat farmer in India.

Across the Himalayas, Ruilian’s Indian counterpart, Vinod Prabhu, is just as pleased with the progress and results his team are producing.

“Over the last five years, we have discovered several water-use efficiency traits and their related genes, bred new lines to incorporate the genes and traits and run national trials, all of which would be unheard of using only conventional breeding practices,” says Vinod, Head of the Genetics Division at the Indian Agricultural Research Institute in New Delhi and the Principal Investigator for the Wheat RI’s drought-tolerant wheat project in India.

By the end of the projects in November 2015, partners in China and India will deliver 15–20 new wheat lines with drought and heat tolerance, adapted to each country’s conditions. An additional target for both China and India is to produce four wheat varieties with improved water-use efficiency and higher heat tolerance. These varieties will have the potential to cover about 24 million hectares and minimise yield loss from heat or drought, or both, by up to 20–50 percent.

Vinod confides that all these outcomes are far more than what he initially expected they would achieve: “When we started, we had a lot of reservations about the complexity of breeding for drought tolerance in wheat as well as the acceptance and uptake of these new breeding techniques by conventional breeders.”

Vinod’s primary role has been to coordinate the Indian centres working on the project (see box at end). But he has also been working to convince Indian plant breeders that these unconventional, new breeding techniques will improve their efficiency and aid in their quest to breed for heat- and drought-tolerant wheat varieties.

“Many world-leading wheat breeders were wary at first, but they have definitely started to see the merit in using the technology to enhance their conventional methods as we edge closer towards releasing new varieties in such a short time,” says Vinod.

Photo: N Palmer/CIAT

Wheat seed ready for planting in Punjab, India.

Incorporating conventional methods

An aspect of the Wheat RI that Ruilian and Vinod have been continually promoting is the importance of conventional breeding methods. “These new molecular-breeding techniques are only a small part of the whole breeding process,” says Ruilian. “Yes, they provide a big impact, but in the grand scheme of things they need to be viewed as one tool in a breeder’s tool box.”

Conventional vs marker-assisted breeding To conventionally breed a new wheat variety, two wheat plants are sexually crossed. The aim is to combine the favourable traits from both parent plants and exclude their unwanted traits in a new and better plant variety. This is achieved by selecting the best plants from among the progeny over several generations. Marker-assisted breeding allows breeders to be much more efficient and targeted in their activities. It still requires breeders to sexually cross plants, but they can use genetic information to tell them which plants have particular genes for useful traits, which helps them to choose which parent plants to cross, and then to confirm which of the progeny have inherited the desired gene without necessarily growing and phenotyping all of them under conditions that would express that trait.

For more information on conventional versus molecular breeding, or marker-assisted breeding, see our quick guide here on the Sunset Blog.

Phenotyping: How to manage a subjective process

One of the most important processes of the Wheat RI, and plant breeding in general, is phenotyping: measuring and recording observable characteristics of the plant such as drought tolerance or susceptibility to pests and diseases. Breeders phenotype the plants they have developed to see which ones have the traits they are interested in and also – for molecular breeding to be possible – to establish links between specific genes and specific traits.

Unfortunately, phenotyping has caused a bit of trouble for both Chinese and Indian partners. The challenge stems from the fact that one person’s observations about a plant’s phenotype or characteristics may not be the same as another person’s.

“This is always a challenge for any collaborative plant-breeding project,” says Vinod. “Unless all trials are inspected by one person, there will always be a risk of inconsistent observations.

Photo: CIMMYT

Scientists from South Asia learn phenotyping on a training course at CIMMYT.

To help overcome this inconsistency, one of the first activities of the Wheat RI was to develop phenotyping protocols that allowed researchers in different research institutes and countries to collect comparable data. GCP enlisted Matthew Reynolds, a wheat physiologist at CIMMYT, to help with this.

“Each breeder has their own ways to do things, so it’s important to develop standardised protocols, particularly for a transnational project like this,” explains Matthew. “We developed a few standardised phenotyping manuals and travelled to China to give some intensive hands-on training.”

This problem is not unique to China and India. Another GCP wheat project is providing promising results to help overcome the risk of inconsistency and increase the efficiency and accuracy of phenotyping. Led by Fernanda Dreccer, based at Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO), in collaboration with the International Center for Agricultural Research in the Dry Areas (ICARDA), the project is developing a reliable phenotyping approach to detect drought-adaptive traits in wheat crops using cheap and simple tools.

“For example, using just a camera you can analyse crop cover, which is an important trait for shading the crop and/or trapping heat,” says Fernanda. “The idea was to test different non-invasive, low-cost tools and compare them to find something that would provide accurate and useful data related to identifying drought-tolerance traits.”

Another important aspect of phenotyping that Fernanda’s project is helping with is constant and consistent analysis of a crop’s surroundings. “It’s just as important to measure the environment of the crop as it is [to measure] the crop itself to make a correlation between an environmental impact and a plant’s reaction,” says Fernanda.

Since the static nature of single observations can give a misleading or incomplete picture, Fernanda’s team is integrating live crop, weather and soil data through mobile sensors in the field with the aim of producing constant phenotypic information. “This will provide new insights into the interaction between the genotype and the environment. This in turn will help to accelerate the detection of wheat genotypes better suited to cope with drought.”

Photo: R Martin/CIMMYT

A young farmer in her wheat field in India.

Managing the tsunami of phenotyping data

Although a plant breeder’s work should be simplified and made more efficient by combining molecular-breeding technologies with advanced phenotyping techniques and protocols, the reality is not necessarily so easy.

There are many steps to the plant-breeding puzzle, all of which produce data. The more advanced the techniques and – in the case of wheat – the more complex the plant’s genome, the more pieces of data breeders need to sift through to find solutions.

Before the Wheat RI started, Richard saw that this impending tsunami of data was going to be a problem in both China and India: “Both countries had the skills to carry out these advanced techniques, but they didn’t have in place a strong culture of data management.”

This problem is by no means unique to China and India, Richard says: “Most of the time, plant breeders keep a log of all their data in a book or Excel sheet. However, these data often get lost once a project is completed.”

GCP recognised this problem before the RIs began and has, since 2009, been developing the Breeding Management System (BMS) – a suite of interconnected software designed to manage the mass of data – as part of its Integrated Breeding Platform (IBP).

“The BMS is the first tool that can help breeders record and collate their data in a coordinated way,” says Richard. “This is vital in a project like this, which has several institutes across three countries working towards a similar product.”

Vinod agrees with Richard, adding that the BMS was relatively easy for his Indian partners to learn and use: “The BMS is great as we have no way of losing data.”

Rolling out the BMS in China, though, has been more difficult due to the language barrier. Ruilian explains: “We are now working towards translating the IBP, but it will be an ongoing challenge as the platform continually changes and is updated.”

Ruilian is optimistic that a translated BMS will become a viable tool for Chinese breeders in the future. “The more that we collaborate with other countries, the more a tool like this becomes important to have.”

Watch Richard on adoption of IBP tools in the video below.

Friendly competition helping inspire India’s wheat breeders

Vinod credits two things for the successful development of new wheat varieties and integration of new breeding techniques and data-management systems: a clear, logical plan and friendly competition between China and India to breed the first new drought-tolerant varieties.

“The initial plan, which Richard helped develop in Montpellier, was logical and well thought out. Although we initially thought it was overambitious in its objectives, we have been able to meet them so far, which is a great credit to the team and their enthusiasm to try these new technologies and see for themselves the benefits first hand.

“What has also helped is our competitive spirit, as we would like to achieve the objectives before the Chinese breeders do. Our breeders are always asking me for updates on how China is progressing!” Vinod adds, with a chuckle.

Ruilian agrees with Vinod’s assessment, adding: “The project would not have been as successful if it was solely national. It needed the international collaboration and friendly competition to help build confidence and drive.”

For Richard this international collaboration, between two very different and proud cultures, allowed the project to broaden its scope and troubleshoot quicker than usual.

“They [the Chinese and Indian researchers] think about problems in different ways. When you get a group of people in a room from different backgrounds, you can come up with great integrated plans, things you would never have come up with within just a national team,” says Richard.

Watch Richard on the beauty of diversity in research partnerships in the video below.

Securing wheat production into the future

With the project concluding in 2015, both the Chinese and Indian researchers are working towards completing national trials and releasing their new, advanced drought-tolerant varieties to farmers and other breeders. However, for Richard, the impact of the Wheat RI may not be fully recognised for 10–20 years.

“The initial new varieties that both China and India develop will help farmers in the short term. However, as both countries become more advanced in using the technology, future varieties are sure to be more and more robust. What’s more, these techniques and tools are sure to filter through to other national wheat-breeding programmes, as well as to other crops.”

In the case of wheat, new drought-tolerant varieties will help secure both China’s and India’s wheat industries, helping to stabilise wheat yields, and consequently prices, the world over. These new varieties may not be the silver bullet for eliminating the risks of drought, but they will go a long way to mitigating its impact.

Photo: Rosino/Flickr

Donkeys bring home the wheat harvest in Qinghai, China.

The GCP Wheat Research Initiative involved 10 institutes from China, India and Australia: China – Chinese Academy of Agricultural Sciences (Institute of Crop Science; National Key Facility for Crop Gene Resources and Genetic Improvement) Hebei Academy of Agricultural Sciences Shanxi Academy of Agricultural Sciences  Xinjiang Academy of Agricultural Sciences India – Indian Agricultural Research Institute Punjab Agricultural University Agharkar Research Institute  National Research Centre on Plant Biotechnology Jawaharlal Nehru Krishi Vishwa Vidyalaya Australia – Plant Breeding Institute, University of Sydney The Wheat RI built on several previous GCP projects conducted by the International Maize and Wheat Improvement Center (CIMMYT) and International Center for Agricultural Research in the Dry Areas (ICARDA).

More links

Jan 302015
 

“Little had been done to advance the genetic diversity of lentils.” This was the picture back in 2005, recalls Aladdin Hamwieh, a scientist at the International Center for Agricultural Research in the Dry Areas (ICARDA) based in Lebanon.

“Lentil has a narrow genetic base, meaning not too many varieties are used in production,” he explains.

Photo: ICARDA

A small sample of the lentil diversity available in the ICARDA gene bank.

It was on this premise that Aladdin joined a three-year global effort to capture and understand the genetic diversity of the world’s lentil varieties – a protein-rich crop that plays an integral part in the lives of many people in Central and West Asia and North Africa (CWANA), South Asia and North America.

He was funded by the CGIAR Generation Challenge Programme (GCP) to develop a refined set of genetic reference materials for lentils so that plant breeders across the globe could access the best gene pool available to be able to improve food security in developing countries.

“Essentially, the genetic make-up of lentil was repeatedly filtered until 15 percent of ICARDA’s gene bank was collected,” says Aladdin.

ICARDA has the largest collection of lentil genes in the world. Some work had been done on improving the genetics of lentils to withstand harsh, dry conditions. But it was not enough to prepare for the challenge the world is now facing – feeding almost 10 billion people by 2050 and climate conditions that mean longer dry periods and more erratic rainfall.

ICARDA has a global mandate for research on lentil improvement. As such, ICARDA houses the world’s collection of lentils, held in trust as a global public good. It includes 8,789 different types of seed of cultivated lentils from 70 countries, 1,146 breeding lines and 574 new seed samples from 4 wild lentil species representing 23 countries. From this, a collection of 1,000 plants was identified for use as GCP reference materials, consisting of traditional farmer varieties, wild relatives and elite varieties and cultivars. Individual plants of each were planted in 2005 so that seed could be collected at the end of the growing season.

The reference set captures the existing genetic diversity of lentils and makes it easier for scientists to search for genes that can help overcome the challenges to lentil production. It consists of about 150 accessions, or 15 per cent of the global collection studied (see box).

Creating the reference set immediately helped researchers to understand more about lentils. “The major outcome was that different gene pools were identified where accessions from Europe and America were clearly separated from Asia and Africa,” Aladdin says. “Accessions from India, Afghanistan and Pakistan were also separated from accessions from the Middle East and North Africa.”

A common resource for lentil breeders

International cooperation and knowledge sharing are hallmarks of GCP, with one of the Programme’s key goals being to facilitate collaboration between scientists from across the globe in breeding new varieties of crops that can not only tolerate drought, but also resist diseases and tolerate poor soils. Ashutosh Sarker, a former lentil breeder and currently Coordinator and Food Legume Breeder for ICARDA’s South Asia and China Regional Program, says production challenges for lentils vary from country to country. While demand is rising globally, he says, some developing countries are having trouble meeting their own need for this staple food.

Photo: P Casier/CGIAR

A woman farmer with lentils in Bihar, India.

This was where the GCP work came in; its purpose, according to Aladdin, was to “develop a diverse reference set that is small and easy to handle. This way, it can be sent around the world for scientists to simultaneously screen for desirable or undesirable traits. This has important implications for developing countries.”

The reference collection serves as a common resource for all lentil breeders interested in the same crop.

“These materials can be accessed to achieve farming goals – to produce tough plants suitable for local environments. In doing this, farmers have a greater likelihood of success, which ultimately improves the wider population’s food security.”

When Aladdin’s team studied the reference collection, they were able to identify favourable genes.

“This enables us to look at the genes of plants and highlight those traits that best suit certain environments,” he says, “and then breed plants to be better adapted.”

Lentils – with a protein content ranging from 22 to 35 percent – are an important source of dietary protein in both human and animal diets, second only to soya beans as a source of usable protein. Lentils are currently grown on 3.8 million hectares worldwide, with a total annual production of over 3.5 million tonnes. The major producers of lentils are countries the South Asia and CWANA regions, and Canada, Australia and the USA. Productivity is low in developing countries, largely because the crop is grown on marginal lands in semiarid environments, without irrigation, weeding or pest control.

Diversity is key to searching for valuable breeding traits

Shiv Kumar Agrawal, who joined ICARDA in 2009, uses the reference set developed for GCP to identify and create markers for drought-tolerant and early-maturing traits for key lentil-producing countries, including Bangladesh, Ethiopia and India.

“Developing more markers will help mitigate lentil’s barriers to production,” says Shiv, pointing to climate change and rising temperatures in production zones as adversely affecting lentil yields.

Markers are like genetic ‘tags’ that indicate which plants or seeds have particular genes, so markers related to relevant genes – for traits such as heat tolerance, for example – can help breeders choose which plant materials to use when developing a new variety.

“Breeding for this should be a priority,” he continues. “Developing heat-tolerant lentil plants would help to expand the area of legume cultivation, stabilise yield in areas prone to heat stress and mitigate impacts of global climate change in the future.”

This is the same for other traits, he says, which would improve food security in developing countries: “Developing extra-early breeds of lentils has great scope in diversifying cropping methods and gives more flexibility for farmers.”

Photo: T Wolday/Bioversity International

Farmers in Ethiopia winnow orange lentils.

Karthika Rajendran, a postdoctoral student working with Shiv at ICARDA, uses both conventional and molecular-breeding approaches to develop heat-tolerant lentil cultivars that mature early. The products of GCP, she says, are “helpful to identify the source of genetic diversity and molecular markers for the traits identified under each research targets.”

Like Shiv, Karthika stresses the value of heat-tolerant varieties for heat-stressed areas and in reducing the impacts of climate change, and adds that improving other traits alongside also has significant impacts: “The development of machine-harvestable lentils reduces the production cost, increases the farm profit, reduces the drudgery of women and improves the nutritional and food security of smallholder farmers in developing countries.”

Photo: E Huttner/ACIAR

Farmer Minto with lentils in his field in Bangladesh.

While achieving such lentil varieties may be some way down the track, Shiv and Karthika offer a small glimpse of what the future holds and the promise of making even more from GCP’s genetic reference set than what has been achieved so far.

Preserving genetic resources

Aladdin Hamwieh is also looking to the future: “We don’t know what tomorrow brings, so people need to understand the value of such genetic reference material.”

He reflects on the reality of how civil unrest in developing countries often means local agriculture is disrupted and crops destroyed, which can mean the loss of traditional varieties.

“We could lose interesting genes from these,” says Aladdin. “We must therefore maintain and protect the ICARDA database, because it stores important information that the next generation won’t be able to study in nature.”

Aladdin is adamant that this is important not only for developing countries but for the whole world. “We can’t make genes in future so this one we cannot lose,” he stresses.

A ‘backup’ duplicate copy of ICARDA’s lentil collection is stored in the Arctic Circle at the Svalbard Global Seed Vault.

Groundwork on lentils ‘gave orientation to future breeding efforts’

Although GCP’s genetic research work on lentils came to an end in 2007, scientists all over the world can still access the materials – and are reaping other benefits from GCP’s work too. For example, ICARDA is using GCP’s Integrated Breeding Platform (IBP) – particularly the Breeding Management System (BMS) – for its lentil-breeding programme.

Reflecting GCP’s collaborative spirit, Shiv explains that his team have not only successfully integrated use of BMS within their own programme, but have also included it in regular training programmes for developing country partners.

Karthika says, “We use the BMS to store historical data of crossing blocks and germplasm collections and to create fieldbooks, field maps and labels of yield trials. We use the crossing manager to build up the list of the crossing blocks, and the breeding manager to maintain the pedigree of the breeding programme.”

She explains that within the BMS, “the breeding view demonstrated a great potential to analyse the phenotypic and genotypic data for single and multienvironmental conditions,” and notes that “the Molecular Breeding Design Tool would be useful in the process of marker-assisted selection.”

ICARDA plans to implement the BMS to develop fieldbooks for Lentil International Elite Nurseries, using the IBFieldbook tool, and to distribute the books to developing country partners for data collection.

“Once the database is centralised, it will facilitate rapid access to breeding material and easy sharing of knowledge and technology to the developing country partners,” says Karthika.

Such ongoing advances in breeding technologies since the outset of GCP mean the refining process can continue.

“We should not stop,” says Aladdin, encouraging other lentil breeders and researchers to continue their work.

Photo: Bill & Melinda Gates Foundation

A female farmer in India helps to harvest lentils by sifting them after fellow workers have beaten the stalks to remove the seeds from their pods.