Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Oct 182015
 
Print Friendly

C-Egesi_w“You can use any technology in the world, you can develop any product, but you need the products that farmers are willing to grow in their field.”

So says Chiedozie Egesi, a plant breeder and geneticist who has been one of the inspirational leaders and Principal Investigators for the CGIAR Generation Challenge Programme’s (GCP) Cassava Research Initiative in Africa.

It was his commitment to helping farmers that led Chiedozie to forsake his dream of becoming a surgeon, and instead to train as a plant breeder and help smallholder farmers in Nigeria. Having grown up in a small town in south-eastern Nigeria where poverty was a daily reality, he was particularly concerned about food security and nutrition for the people. He dreamt of developing cassava varieties that could beat the pests and diseases that often devastate such crops.

Photo: IITA

Peeling cassava roots.

“The food people grow should be nutritious, resistant and high-yielding enough to allow them to sell some of it and make money for other things in life, such as building a house, getting a motorbike or sending their kids to school,” Chiedozie says.

Nigeria is the most populous African country, with a population of more than 174 million. The main staple food is cassava, making Nigeria the world’s largest producer and consumer of the crop. But cassava is also important in other African countries. It is grown by nearly every farming family in sub-Saharan Africa. Africa produced nearly 140 million metric tonnes of cassava in 2012 – but most of the production is low-yielding subsistence farming for food by small-scale farmers for food for their own households alone.

After almost eight years working on GCP-supported cassava projects, Chiedozie is proud of what they have managed to accomplish: “That we’ve been able to give African farmers the varieties that they will love to grow is my biggest achievement”.

Meet Chiedozie and hear all about his research and the importance of cassava in the video series below (or watch on YouTube):

Transformation for Chiedozie – and for cassava

Chiedozie’s journey with GCP began after he had gained his PhD in yam breeding from the University of Ibadan, Nigeria. He undertook further studies and training at Cornell University and the University of Washington, both in the USA. He then returned home to Nigeria to lead the cassava breeding team at the National Root Crops Research Institute (NRCRI) and, following a promotion in 2010, was made Assistant Director of NRCRI’s Biotechnology Department. In 2004, a chance find on the Internet of a molecular breeding training programme in South Africa first led to Chiedozie’s involvement in GCP.

In 2010, work by Chiedozie and the NRCRI team, in collaboration with a transnational network of partners, resulted in the official release to Nigerian farmers of Africa’s first cassava variety developed using molecular-breeding techniques. Known as UMUCASS33 (or CR 41-10), it was resistant to cassava mosaic disease (CMD) – a devastating plant disease that can wipe out entire cassava crops – and also highly nutritious. In addition to a stream of further disease-resistant varieties, in 2012 they followed this accomplishment with the release of a high-starch variety bred using molecular techniques.

Photo: IITA

Nigerian women at work processing cassava.

In 2011, the cassava team together with the International Institute of Tropical Agriculture (IITA) and HarvestPlus (another CGIAR Challenge Programme focussed on the nutritional enrichment of crops), released three cassava varieties rich in pro-vitamin A, which hold the potential to provide children under five and women of reproductive age with up to 25 percent of their daily vitamin A requirement – a figure Chiedozie and his team are now ambitiously striving to increase to 50 percent. In 2014, they released three more pro-vitamin A varieties with higher concentrations of beta-carotene.

These new and improved varieties – all generated as a direct or indirect result of his engagement in GCP projects – are, Chiedozie says, worth their weight in gold for the people of Africa.

Research that delivers benefits to poor farmers is what drives Chiedozie. In addition to the direct rewards of new varieties there are other highlights from his involvement with GCP, indicating a long term change in breeding science: “People are now using improved or modern techniques in breeding; people think about database management in cassava breeding across Africa; and African breeders are getting PhDs in molecular breeding.”

Photo: N Palmer/CIAT

Cassava leaves.

Building African capacity

Chiedozie believes a crucial element of GCP’s success in breeding better cassava varieties for smallholder African farmers lies in the capacity building and infrastructure support provided by GCP.

After his initial GCP training at the University of Pretoria, South Africa, Chiedozie engaged in other capacity-building opportunities, including a one-year visiting scientist fellowship at the International Center for Tropical Agriculture (CIAT) in Colombia. The significance of these early GCP opportunities was, Chiedozie says, momentous: “Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then.”

Chiedozie quoteChiedozie emphasises that such training opportunities are vital for the future food security of Africa. “We raised up a new crop of cassava breeders in Africa – people who were bold enough to take up a molecular breeding project and pursue it with support from the international centres. And today we are seeing the results of that. Cassava breeding programmes are standing today because of our quality of seeds sown in the past.”

The networking opportunities offered by the Cassava Community of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – have meant that Chiedozie and his colleagues could expand their collaboration at the local, national and regional levels: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons and also made our work more visible,” he says, citing effective links formed with Côte d’Ivoire, Ethiopia, Ghana, Liberia, Malawi, Mozambique, Sierra Leone and South Sudan.

Photo: M Mitchell/IFPRI


Selling fufu, a staple food made with cassava flour, at a market in Nigeria.

A paradigm shift

These opportunities have led to what Chiedozie calls a ‘paradigm shift’ in how national research agencies are viewed by donors and research investors: “GCP helped us to build an image for ourselves in Nigeria and in Africa, and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.

“Our work with GCP helped us to gain that capacity that we needed to be able to negotiate or even make a request for funding. And people are able to trust that you can deliver if you have delivered in the past for an organisation like GCP. So it gave us credibility; it gives us a platform to be able to speak to donors directly, and donors can now approach us, which never used to happen in pre GCP days.”

This newly found confidence and profile sees the NRCRI cassava team currently engaging with the Bill & Melinda Gates Foundation and the CGIAR Research Program on Roots, Tubers and Bananas (RTB) on research that will expand on and follow through on what GCP started.

Hear from Chiedozie on the beneficial outcomes of GCP – in terms not only of variety releases but also of attracting further projects, prestige, and enthusiastic young breeders – in the video below (or on YouTube):

For Chiedozie, his dream of helping his country’s struggling farmers and people is coming true. He has no regrets about dropping his dream of becoming a surgeon for one of helping his country as a plant breeder: “Coming from Umuahia, a small town in the southeast of the country, I grew up in an environment where you see people who are struggling, weak from disease, poor, and with no opportunities to send their children to school.

“Despite the social injustice around me, I always thought there was opportunity to improve people’s lives. This is what the GCP-supported research has helped me to do, even faster than I would have believed possible.”

More links

Oct 092015
 
Print Friendly

 

Photo: IITA

Elizabeth Parkes

Elizabeth Parkes grew up in Ghana as the youngest child and only girl in a middle-class family of nine children. Through visiting poor communities with her family, she began from an early age to build her understanding of the lives of resource-poor families in this part of West Africa and their need for reliable and nutritious food.

She also knows first-hand the important role women play on a farm and in a family. “Rural families are held together by women, so if you are able to change their lot, you can make a real mark,” says Elizabeth.

It was this sense of social conscience that drew her to a career in agricultural research: “My father, a Regional Education Officer, was not very amused; he thought agricultural research was a man’s job!” she recalls.

But Elizabeth was on a mission. “I see African communities where poverty and hunger are seemingly huge problems with no way out,” she says. “If I put in enough effort, I can bring some solutions. My primary target group is the less privileged, and women in particular have been my friends throughout. This sometimes means subtly getting the men to consider some changes in roles.”

This sense of destiny led to Elizabeth gaining a Bachelor’s degree in Agriculture, a Diploma in Education and a Master’s in Crop Science.

Meet Elizabeth in the complete podcast below (or see a playlist on PodOmatic)  – and be inspired by her warmth and passion!

 

Photo: IITA

A worker in a Ghanaian cooperative producing garri, or gari, a kind of granular cassava flour used to prepare a range of foods.

Turning point: cassava to help the vulnerable

During a stint of national service between academic degrees, she was based in the tiny poor village of Aworowa in the Brong Ahafo Region. There was no electricity in her room, and the street lights came on once a week.

Photo: Tini Maier/Flickr (Creative Commons)

In a poor Ghanaian community everyone has to pitch in to the heavy daily round of chores.

“We all fetched water from the stream to drink and cook,” Elizabeth recalls. The plight of the villagers inspired Elizabeth to approach a scientist engaged in root and tuber projects at the Crops Research Institute (CRI) of Ghana’s Council for Scientific and Industrial Research (CSIR). She offered to carry out some research on cassava, hoping this might help the local people.

“I saw the struggle for households,” says Elizabeth. “I lived with them for one year, which transformed my interest and focus onto the vulnerable and less privileged.”

As a result, Elizabeth established CRI cassava trials in the region, and these trials continue today with Elizabeth still in touch with the villagers.

When her year of national service finished, Elizabeth was appointed as Assistant Research Officer at CRI – their first woman to be assigned to a research project. Already, she was beginning to fulfil her destiny.

Photo: IITA

Healthy cassava plants.

Challenges and opportunities

Photo: IITA

Unlike most crops, cassava is propagated, not by seed, but using cut sections of stem like these – just one of the many challenges this previously neglected crop offers breeders.

But cassava is not the easiest crop for a young researcher to cut their teeth on. It has long been regarded as an ‘orphan’ crop – one that researchers and funders have forgotten in their drive to work with the higher profile crops of wheat, rice and maize.

Cassava is a challenging crop for breeders to work with. “In addition to factors such as pests and disease, cassava is a long-season and very labour-intensive crop. It can take a whole year before you can expect to reap any rewards, and if you don’t have a strong team who can step in at different points throughout the breeding process, you can often find unexpected results at the end of it, and then you have to start all over again,” Elizabeth says.

But while many other young researchers gave up on with cassava, Elizabeth stuck with it, knowing the importance of this crop to farmers, especially women. And this is where Elizabeth’s involvement with the CGIAR Generation Challenge Programme (GCP) really started to make a difference to her future.

During GCP’s first research phase, Elizabeth’s path crossed with GCP scientist Martin Fregene, who encouraged Elizabeth to lead the Ghana partners involved in GCP’s cassava projects. She soon climbed the GCP research ranks, receiving multiple study grants, managing projects, and mixing and mingling with elite scientists. Along the way, Elizabeth also learnt new molecular breeding techniques. More recently, she was appointed Ghana’s lead researcher for GCP’s Phase II Cassava Research Initiative.

A place at the table, and sharing joy

Photo: IITA


Elizabeth Parkes examines a healthy crop of monster roots from an improved cassava variety.

Elizabeth believes the support GCP gave her to develop her skills and capacity is what has made a difference to her own and others’ destinies as research scientists: “GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner. I see GCP as the pace setters.

Elizabeth Parkes quote 2

“GCP gave you the keys to solving your own problems and put structures in place so that knowledge learnt abroad could be transferred and applied at home.

“When I first joined GCP,” Elizabeth recalls, “I saw myself as somebody from a national research programme being given a place at the table; my inputs were recognised and what I said carried weight in decision-making.”

Elizabeth has attended three GCP Annual (later General) Research Meetings and won awards for her posters. “This greatly boosted my confidence,” she says. She is an active member of the Cassava Community of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – which facilitates and supports the integration of marker-assisted selection into cassava breeding. All this has accelerated Elizabeth’s quest to produce and disseminate farmer-preferred cassava varieties that are resistant to pests and diseases.

Elizabeth Parkes quote 3“With the Community of Practice you can call on other scientists; you share talk, you share ideas, you share joy. We share everything together,” Elizabeth enthuses. ‘Joy’ is a word that is often on Elizabeth’s lips when she describes the help that GCP has given her and others.

“We are all forever grateful to GCP and its funders. GCP has had a huge impact on research in Ghana, especially for cassava, rice, maize and yam. All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

Photo: A Hoel/World Bank

A farmer in Benin transforms cassava into garri, or gari, used as the basis of many different dishes.

Elizabeth Parkes quoteIn less than a decade, Elizabeth has become a valued researcher at CRI (currently on secondment at the International Institute of Tropical Agriculture, IITA) as well as Ghana’s leading GCP-supported scientist working on cassava. But in fulfilling her own destiny, she’s also passionate about helping others to achieve their potential.

“Building human capacity is my greatest joy,” she says. Farmers, breeders and a Ghanaian private-sector company are just a few of the fortunate beneficiaries of her expertise over recent years.

“Wherever I go, whatever opportunity I have, I refer back to GCP and its capacity-building work. You see, it’s good to release new plant varieties, but it’s also good to release people who will do the job.”

Nurturing women

Photo: O Girard/CIFOR

Angelique Ipanga tends her cassava plants in the Democratic Republic of Congo. Cassava is often seen as a “women’s crop,” and the work of cultivating and preparing it falls largely on women’s shoulders.

Elizabeth talks about one of her favourite people, a farmer called Bea: “She’s very serious. She wants to learn more and she keeps expanding her farm.”

Bea hadn’t planted cassava before, so she pestered Elizabeth to find out more about how to do it properly. With Elizabeth’s guidance, Bea’s cassava-growing skills flourished, and she became so successful that she was recognised as the best farmer in her community.

“These are things that make me glad… that at least I have impacted somebody who hadn’t planted cassava before, and it’s amazing,” says Elizabeth. “There are people out there who need us, and when we give them our best, they will give the world their best as well.”

Elizabeth is also passionate about helping other women researchers: “I’ve pushed to make people recognise that women can do advanced agricultural science, and do it well. To see a talented woman researcher firmly established in her career and with her kids around her is thrilling.”

And so Elizabeth is now herself firmly established in world-class agricultural research, and further interesting stories are sure to follow.

“Before GCP we really struggled, but now everybody wants to have training in Ghana. Everybody wants to have something to do with us, and I will always say thank you to GCP for that, for making us attractive as researchers,” Elizabeth says.

“I’ve stuck with cassava because that’s my destiny! I may add other root and tuber crops, but cassava is my pivot.”

More links

Oct 082015
 
Print Friendly

 

Photo: IITA

Ousmane Boukar

“There is a clear need to develop a range of varieties that meet diverse requirements”

For 30 years, Ousmane Boukar has been working towards a singular goal: to improve and secure cowpea production in sub-Saharan Africa.

Cowpeas are very important in sub-Saharan Africa,” he says. “They are an important source of protein, and contribute to the livelihood and food security of millions.”

Despite their dietary importance, cowpea yields in Africa are low – on average a mere 10 to 30 percent of their potential. This is primarily because of attacks from insects and diseases, but is often further compounded by chronic drought.

Since 2007, Ousmane has worked for the International Institute of Tropical Agriculture (IITA) as cowpea breeder and Station Representative in Kano, Nigeria. As a breeder, his mission is to improve yields by identifying additional genetic sources of resistance to pests and diseases, tolerance of parasitic weeds, improved drought tolerance and adaptation to low soil fertility.

To accomplish this, he searches for genes associated with these kinds of valuable traits. He then uses this information to develop breeding populations comprising of plant lines with multiple useful traits, and works with farmers to grow these populations to make sure they do grow well in the field before releasing them as new varieties.

“Cowpea breeding is very challenging because of the range of production environments and cropping systems, and the diverse preferences among consumers and producers for grain, leaves, pods and fodder,” Ousmane says. “There is a clear need to develop a range of varieties that meet those diverse requirements, combining high yield potential and resistance to the major production constraints.”

Photo: IITA

A farmer’s field full of cowpea plants (with maize at the background) in Kano, Nigeria.

Joining an international programme

The same year Ousmane joined IITA, he joined forces in a new collaboration with cowpea breeders and geneticists from Burkina Faso, Mozambique, Senegal and the USA. He was Product Delivery Coordinator for the cowpea component of the Tropical Legumes I project (TLI) – a seven-year project funded by the CGIAR Generation Challenge Programme (GCP) that sought to use marker-assisted breeding techniques to breed high yielding, drought-tolerant and insect- and disease-resistant varieties of four important legumes.

Photo: IITA

Cowpea plants at podding stage.

“TLI has had a huge impact in Africa in terms of developing capacity to carry out marker-assisted breeding. This form of breeding helps us to breed new varieties in three to five years instead of seven to ten years.”

Key outcomes from the cowpea component of the project were a cowpea genome map and molecular markers that have helped breeders like Ousmane locate the genes in cowpeas that determine and regulate desirable traits. These markers can be used like flags to indicate which potential parent plants have useful genes, and which of the progeny from each cross have inherited them, making breeding more efficient.

“We have used this technology to develop advanced breeding lines that are producing higher yields in drier conditions and displaying resistance to several pests and diseases such as thrips [insects which feed on cowpeas] and Striga [a parasitic weed]. We expect these lines to be available to plant breeders by the end of 2015.”

Photo: IITA

Cowpea seed.

Ousmane says the success of the cowpea component of TLI owes much to the pre-existing relationships the partners had before the project. “TLI was an extension of a USAID collaborative project [Bean/Cowpea Collaborative Research Support Program] we had been working on since 2002,” he explains. “I had also crossed paths with breeders in Senegal, Burkina Faso and USA many times when I worked with the Institute of Agricultural Research for Development [IRAD] in Cameroon.”

Photo: IITA

Striga in a cowpea plot.

Ousmane was with IRAD in his home country of Cameroon from 1990 to 2007. He also worked by correspondence during this time to complete both his Master’s and Doctoral degrees in Plant Breeding and Genomics from the University of Purdue in Indiana, USA. His thesis involved characterising and mapping Striga resistance in cowpeas. Striga is a parasitic weed widespread in West Africa, which can reduce susceptible cultivar yields by up to 100 percent. Resistance within the host plant is the only practical control method (see ‘Cowpea in between’, GCP Partner and Product Highlights 2006, page 23).

Photo: IITA

A trader sells cowpeas in Moniya market, Ibadan, Nigeria.

Taking the lead in the Community of Practice

In 2011, in addition to his TLI and Product Delivery Coordinator roles, Ousmane became the coordinator of the Cowpea Community of Practice (CoP) – a newly created network founded by GCP to develop capacity in Africa and help GCP researchers share their new expertise in molecular breeding.

“The CoP was designed for cowpea researchers and people interested in cowpeas to ask questions and to share their expertise and knowledge, particularly with people who don’t have the experience, such as graduate students or breeders new to cowpeas,” Ousmane explains. Members are from Burkina Faso, Cameroon, Kenya, Malawi, Mali, Mozambique, Niger, Nigeria, Senegal, Tanzania and USA.

“My role as coordinator is to collect ideas, find funding opportunities, and understand member expertise and resources so I can direct members of the community to the right people.”

Photo: TREE AID

Ghanaian farmer Alanig Bawa drying cowpeas.

Ousmane says the position has opened his eyes to all the new research going on in cowpea. The number of new researchers in the field also heartens him. “There are more researchers that are practising molecular breeding than ever before, which is great, because we can enhance their impact and efficiency in cowpea breeding.”

As membership grows, Ousmane is confident that the community and capacity that have developed with help from GCP will remain sustainable after GCP’s close at the end of 2014. “Governments in Nigeria and Burkina Faso understand the importance of cowpeas and are investing in our research. As the set of skills and the number of personnel grow in other sub-Saharan countries, we are confident that cowpea research will expand and produce higher yielding varieties for their farmers.”

More links

 

Sep 242015
 
Print Friendly

Hei Leung has always been passionate about diversity, especially genetic diversity, and that’s one reason why he leapt at the chance to get involved with the CGIAR Generation Challenge Programme (GCP) right from its inception more than a decade ago.

Photo: IRRIBut GCP’s attraction for Hei wasn’t just about genetic diversity; it was also about working with diverse institutes and researchers. At the time, Hei had been working for the International Rice Research Institute (IRRI) for some 10 years, on and off, including a stint at Washington State University in the USA.

“The whole idea of the Challenge Programme was to bring people together from different places instead of an individual CGIAR Centre doing things,” he says.

Hei also saw the likely spin-offs from rice research to other crops such as wheat, maize and sorghum, which are also crucial to food security.

Rice is a ‘model crop’ because of its small genome. This means researchers in major cereals like wheat and maize, which have much bigger genomes but share genes of similar functions, can benefit from our work with rice.”

Photo: Jeffreyw/Flickr (Creative Commons)

From little pizzas great programmes grow!

It all began in 2003, over pizza, in Rome. Hei remembers that his commitment to GCP started when he met with a small group of people including Robert Zeigler, who was to become the first Director of GCP, and who is currently Director General of IRRI.

“Little did we know that pizza was so inspiring,” Hei says, recalling that it was during that meeting that they agreed on the name: the Generation Challenge Programme.

GCP was formally launched in 2004 in Brisbane, Australia, at the 4th International Crop Science Congress.

Making the Programme ‘pro-poor’

Hei was initially involved with GCP as Subprogramme Leader for Comparative Genomics for Gene Discovery between 2004 and 2007, and later as a Principal Investigator for the Rice Research Initiative. Taking on his leadership role, Hei recognised from the start that many crops important to developing communities in Asia and Africa needed to become more drought-tolerant because of the increasing effects of climate change.

“We wanted to have a programme that is what we call ‘pro-poor’,” he says. “The majority of the world’s people depend on crops such as rice, wheat and maize for food.”

“I always feel that if you can solve eastern India’s problems, you can solve most of the problems in the world,” Hei adds. “If you travel in eastern India, you can see climate change happening day in, day out. You don’t have to wait 10 years or 50 years; it’s happening already. They either have too much or too little water. It’s a high-stress environment.”

Photo: N Palmer/CIAT


Women at work threshing rice near Sangrur, Punjab, India.

Rice is the world’s most widely consumed cereal crop, and is particularly important as the staple food of 2.4 billion people in Asia. GCP recognised rice’s importance and invested almost USD 29.5 million in rice research and development.

Furthermore, the genetic breeding lessons learnt from rice can also be applied to other staple crops such as wheat, maize and sorghum.

Other GCP-supported researchers used comparative genetics to determine if the same or similar genes – for example, the phosphorus starvation tolerance (PSTOL1) protein kinase gene found in rice – was also present and operating in the same manner in sorghum and maize.

They found sorghum and maize varieties that contained genes, similar to rice’s PSTOL1, that also conferred tolerance to phosphorus-deficient soils by enhancing the plant’s root system. They were then able to develop molecular markers to help breeders in Brazil and Africa to identify lines with these genes, which can now be used in breeding and developed as varieties for farmers growing crops, particularly in acidic soils.

Seeing the potential for novel researcher interactions

Hei also recognised that crops that received less scientific attention but remained important as regional staple foods, such as bananas and plantains (of the genus Musa), could benefit from comparative genomics research.

“We had a highly motivated group of researchers willing to devote their efforts to Musa,” remembers Hei, who is currently IRRI Program Leader of Genetic Diversity and Gene Discovery.

“GCP’s community could offer a framework for novel interactions among banana-related actors and players working on other crops, such as rice. So, living up to its name as a Challenge Programme, GCP decided to take the gamble on banana genomics and help it fly.”

Photo:  Asian Development Bank

A banana farmer at work in the Philippines.

However, after four years, Hei found it difficult to maintain his GCP leadership role as well as keep on top of his IRRI work: “They said I was 50 percent with IRRI and 50 percent with GCP, but it is never like that in reality. I was always doing two jobs, or at least one-and-a-half jobs, and I didn’t think I was doing a good enough job for either. I thought it was time for other people to come into GCP.”

While Hei stepped down from a leadership role, he remained active working on GCP projects throughout the life of the Programme.

Hei says that during the last five years of GCP, a lot of technology to characterise genetic diversity evolved “to bring high-quality science to accelerate our mission to help the poor areas of Asia and Africa.”

Streamlining GCP reporting: from three reports a year down to just one One of the things that initially bothered Hei during his GCP time was the reporting requirements: “I remember we used to ask people to submit a mid-year report, end-of-year report and an update. “So I stuck my neck out during the last couple of years, and I said: ‘Guys, stop it. Don’t ask for these reports. They become mechanical. People just fill in the blanks. Ask for just one report before or after our annual meeting: just one report that people are excited to write about. And that was adopted.”

A MAGIC affair

The development of MAGIC (multi-parent advanced generation intercross) populations is the project that Hei gets most excited about. From these populations, created by crossing different combinations of multiple parents, plant lines can be selected that have useful characteristics such as drought tolerance, salinity tolerance and the ability to produce better quality grain.

“Now many crop breeders are calling for MAGIC populations,” says Hei. “I feel proud that at GCP we decided to support this concept and activity. This is one of GCP’s most important legacies and it’s one of my most favourite things.”

Photo: IRRI

Hei Leung looking relaxed in the lab at IRRI.

Honoured as a Fellow of the American Phytopathological Society (APS), Hei is recognised “for his leadership in the international community toward building and distributing rice genetic and genomic resources and creating capacity in plant pathology in the developing countries of Asia.”

Hei’s GCP leadership and research have clearly provided him with an important platform for taking on leadership and champion roles linking many individuals and organisations across Asia and Africa. His ASP profile concludes: “His promotion of collaborative research and his leadership in such programmes in the developing world have contributed to the building of a dynamic research community that promotes both basic knowledge and food security for Asia and the world.”

Making a difference to food security and farmer’s lives in developing countries is what GCP is all about. Such differences have been made possible through collaborative links that connect a diversity of organisations and people with the latest research in genetic diversity and breeding techniques.

Photo: IRRI

A farmer transplants rice in the Philippines.

It’s amore!

hei quoteHei recalls his personal and professional journey with GCP with much affection: “I think that it has been a wonderful scientific journey in terms of knowing the science and opening up my mind to being more receptive to alternative ways of doing things.

“There have been so many friends I have met through networking with GCP. Sometimes you go through bumpy roads, but anything you do will have bumpy times. And it’s very unusual to have a programme so illuminating. We honoured our commitment to finish in 10 years. It is a programme that had a fresh start and a clean ending.

“Most importantly, GCP has enabled plant breeders to embrace cutting-edge science through partnerships that focused on improving crop yields in areas previously deemed unproductive,” he says. “GCP is unique, one-of-a-kind, and I love it!”

More links

Mar 102015
 
Print Friendly

 

Niaba Témé

Niaba Témé

“I can’t talk enough about the positive stories from the Generation Challenge Programme [GCP]. It initiated something new. I cannot measure its benefits for my country, for myself and for the sorghum-breeding and -producer communities. Right now, GCP has reached its sunset; but for me it is a sunrise, because what we have been left with is so very important.”

Growing up in a farming community in Mali, on the southern edge of the Sahara Desert, plant breeder Niaba Témé knows the ups and downs of farming in the harsh, volatile semiarid regions of Africa.

“I used to love harvesting the millet and helping my mother with her groundnut crops,” he remembers fondly. “We grew other dryland crops too, like sorghum, cowpeas, Bambara nuts, sesame and dah.”

Niaba’s village of Yendouma-Sogol is one of many villages balanced along the edge of the Bandiagara escarpment – 150 kilometres of sandstone cliffs soaring hundreds of metres above the sandy plains below. The region is considered one of the most challenging places in the world to be a farmer. The climate is harsh, with the average daily temperature on the dry, sun-scorched plains rarely falling below 30°C and often exceeding 40°C during the hottest months of the year. With no major water source available for drinking, cropping and livestock husbandry, the threat of drought is ever-present here, as it is across much of Africa’s semiarid landscape.

While much of Mali’s irrigated agriculture relies on water from the River Niger, villages like Niaba’s depend entirely on the 500 or so millimetres of rainfall they receive during the July–August wet season. In the years that the rains didn’t come, Niaba’s family were unable to harvest anything at all. The repeated failure of his parents’ crops – coupled with a natural interest in science – inspired Niaba to embark on a career where he could help farming families like his own defend themselves against the risks of drought and extreme temperatures.

Photo: F Fiondella/CCAFS

Farmland in Diouna, Mali. Farmers here must contend with the Sahel’s dry, sandy soil and whatever limited rainfall the clouds bring to grow sorghum, millet, maize, and other crops.

Niaba’s journey

Niaba’s first big step along the research road was when he enrolled to study agronomy at Mali’s Institut Polytechnique Rural de Formation et de Recherche Appliquée in Eastern Bamako. Within two years he was offered a scholarship to study plant breeding at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Hyderabad, India. He then worked at the Cinzana Research Station in Mali.

Niaba later spent 11 years in the USA completing a bachelor’s degree, master’s degree and finally PhD in agronomy at Texas Tech University before returning home to Mali in 2007, where he was soon recruited by Mali’s Institut d’Économie Rurale (IER) to take charge of their new biotechnology lab at the Centre Régional de Recherche Agronomique.

His journey with the Generation Challenge Programme began in 2010 when IER received GCP funding to carry out sorghum research in Africa as part of GCP’s Sorghum Research Initiative (RI) launched that same year. The project was a collaboration with ICRISAT and France’s Centre de coopération internationale en recherche agronomique pour le développement (Agropolis–CIRAD; Agricultural Research for Development). With an initial focus on Mali, the project’s results would expand to encompass five other countries in the Sudano-Sahelian region: Burkina Faso, Ethiopia, Kenya, Niger and Sudan.

Sorghum the survivor gets even tougher

Photo: ICRISAT

Hand milling of sorghum grains – an arduous task, mostly carried out by poor women in the drylands of Africa.

Drought-hardy crops such as sorghum are ideal for Mali’s conditions, where more water-intensive crops such as maize simply cannot survive. Millions of poor rural people across Africa depend on sorghum in their day-to-day lives: it is eaten in many forms, used to make alcoholic beverages and as animal fodder, and is converted into biofuel for cooking.

But even sorghum has its limits. While the demand for it has doubled in West Africa in the last 20 years, productivity has generally remained low, with an average yield of only one tonne per hectare for traditional varieties in Mali. This is mostly due to post-flowering drought, poor soils and farming conditions, and limited access to quality, high-yielding seed. As rainfall patterns become increasingly erratic and variable across the world, scientists warn of the need to improve sorghum’s broad adaptability to drought, to ensure future food security in Africa.

The GCP Sorghum RI, with Niaba’s help, aimed to support the development of new breeds of sorghum that could survive better on less water in drought-stricken parts of Africa. It sought to improve sorghum yield and quality for African farmers and, in turn, improve the livelihoods and food security of communities across sub-Saharan Africa.

In 2012, Niaba found himself travelling once again, this time to Australia with IER colleague Sidi B Coulibaly. They spent three weeks working alongside, and training with, Andrew Borrell and his sorghum research team at the Queensland Government Department of Agriculture, Fisheries and Forestry’s (DAFF) Hermitage Research Facility in Warwick.

“We have been collaborating with researchers at DAFF and The University of Queensland since 2009, to introduce what is called the ‘stay-green’ drought-resistant gene into our local sorghum varieties,” says Niaba.

Photo provided by A Borrell

Left to right: Niaba Témé with David Jordan (Australia), Sidi B Coulibaly (Mali) and Andrew Borrell (Australia), visiting an experiment at Hermitage Research Facility in Queensland, Australia.

Niaba’s no longer green when it comes to using stay-green

Stay-green is a drought adaptation trait that allows sorghum plants to stay alive and maintain green leaves for longer during post-flowering drought. This means the plants can keep growing and produce more grain in drier conditions. It has contributed significantly to an increase in sorghum yields, using less water, in north-eastern Australia and southern USA for the last two decades.

GCP’s stay-green project aimed to evaluate the potential for introducing stay-green into Mali’s local sorghum varieties, enriching Malian pre-breeding material for the trait, and training African sorghum researchers, such as Niaba, in the methods of improving yields and drought resistance in sorghum breeding lines from both Australia and Mali.

Photo provided by E Weltzein-Rattunde

A sorghum farmer in Mali.

“In Australia we learnt about association mapping, population genetics and diversity, molecular breeding, crop modelling using climate forecasts, and sorghum physiology,” says Niaba.

Learning to use molecular markers was particularly exciting, he says, “because molecular markers make it easier to see if the plant being bred has the gene related to drought tolerance, without having to go through the lengthy process of growing the plant to maturity and risk missing the trait through visual inspection.”

Niaba says the molecular training he received in Australia complemented previous training he had received through a collaborative GCP-funded project with Agropolis–CIRAD and Syngenta Foundation for Sustainable Agriculture, in which he learnt to use molecular markers to identify and monitor key regions of sorghum’s genome in consecutive breeding generations through a process called marker-assisted recurrent selection (MARS).

A large part of GCP’s focus is building such capacity among developing country partners to carry out crop research and breeding independently in the future, so they can continue developing new varieties with drought adaptation relevant to their own environmental conditions.

“Our time in Australia was an intense but rewarding experience, more so for the fact that between the efforts of Australia and Mali, we have now developed new drought-tolerant crops which will enhance food security for my country,” says Niaba. “Similarly with the help of Agropolis–CIRAD and Syngenta, we are using molecular markers to improve breeding efficiency of sorghum varieties more adapted to the variable environment of Mali.”

Photo provided by A Borrell

Niaba (foreground) examining a sorghum panicle at trials in Mali in 2009.

Sorghum sunrise in Mali

On the back of the MARS project, Niaba successfully obtained GCP funding in 2010 to carry out similar research with Agropolis–CIRAD and collaborators in Africa at ICRISAT.

“In that project, we were trying to enhance sorghum grain yield and quality for the Sudano-Sahelian zone of West Africa using the backcross nested association mapping (BCNAM) approach,” explains Niaba. “This involved using an elite recurrent parent that is already adapted to local drought conditions. The benefit of this approach is that it can lead to detecting elite varieties much faster.”

The approach has the potential to halve the time it takes to develop local sorghum varieties with improved yield and adaptability to drought. The project developed 100 lines for 50 populations from backcrosses carried out with 30 recurrent parents. The lines are now being validated in Mali.

Photo: P St-Jacques/DFATD-MAECD

Agronomists inspect a field of sorghum in Mali.

Niaba says such successful collaborations and capacity development opportunities have been made possible only through GCP support.

“We had some contacts before, but we didn’t have the funds or skills to really get into a collaboration. Now we’re motivated and are making connections with other people so we can continue working with the material we have developed.

“GCP’s time may be ending, but it very much represents a new day – a sunrise for the work we are doing with sorghum here in Mali.”

More links

Photo: N Palmer/CIAT

Sorghum for sale.

Feb 242015
 
Print Friendly
Photo provided by S Gudu

Sam Gudu

Kenyan crop scientist Samuel (Sam) Gudu loves nothing more than getting his hands dirty out on the land.

Photo: J Agalo

Seeing the true impact of research and doing what he likes to do best: Sam in a maize field in Kenya.

“Although these days I spend most of my time inside doing administrative work, I go out to the field at least once a month, as this is the only way I can truly see how our research is helping to make the lives of Kenyan farmers a lot more profitable and sustainable,” he says.

A love for the land began in Sam’s childhood on the banks of Lake Victoria in western Kenya, where he learnt the value of “hard and honest” work and a sense of responsibility for the welfare of his community.

“Growing up in a small fishing village, I was always helping my parents to fish and garden, or my grandparents to muster cattle. I remember spending long hours before and after school either on the lake or in the field helping to catch, harvest and produce enough food to eat and support our family,” he says.

It was in his high school classroom some 40 years ago that Sam’s outdoor enthusiasm grew into a keen thirst for knowledge of the world. “I became very interested in biology, as I wanted to know how nature worked,” he says. “I was particularly captivated by the study of genetics, as it focussed on what controlled life.” Today, a quick glance through Sam’s CV leaves no doubt as to his dedication since his youth to advancing plant genetics and biotechnology. His passion was firmly grounded at the University of Nairobi, where he completed his undergraduate degree and Master of Science in Agriculture, focussing on genetics and plant breeding.  Realising the potential of biotechnology to combat the agricultural, health and environmental challenges facing developing countries like his own, Sam then secured a scholarship to undertake a PhD in plant genetics and biotechnology at the University of Guelph, Canada, between 1988 and 1993. Returning to Kenya in 1993, Sam took a teaching position in the Department of Botany at Moi University in Eldoret, in western Kenya, and was eventually promoted to Professor there in 2003 and later Deputy Vice Chancellor (Planning and Development). He is now also Principal of Rongo University College (a constituent college of Moi University).

Sam and GCP embrace biotechnology and emerging scientists

Sam’s relationship with the CGIAR Generation Challenge Programme (GCP) began in 2009 via a series of collaborative projects to advance maize and sorghum genetics for acid soils. Along with some of his students at Moi University, he worked primarily with researchers at the Brazilian Corporation of Agricultural Research (EMBRAPA), Cornell University in the USA and Niger’s Institut National de la Recherche Agronomique du Niger.

Photo: C Schubert/CCAFS

A farmer in her maize field in Kenya.

To take the example of maize, the challenge they face is that small-scale farms across Kenya yield less than one tonne per hectare, and this figure is declining. This compares with a possible yield of five to eight tonnes under controlled research conditions. Constraints to maize production in Kenya are threefold: soil acidity and poor fertility, pests and diseases, and frequent droughts.

Through GCP, Sam was also able to work with senior researchers at the International Rice Research Institute in The Philippines, the International Crops Research Institute for the Semi-Arid Tropics in India and the Japan International Research Center for Agricultural Sciences.

“Collaborating with these advanced colleagues in their advanced labs has enabled us to develop [breeding] materials much faster,” says Sam, talking about the virtues of improved breeding efficiency in delivering new and improved crop varieties more quickly and ultimately benefitting farmers sooner. “I can see that post-GCP we will still want to communicate and interact with these colleagues to enable us to continue to identify molecular materials that we discover.”

Photo: J Agalo

Sam (left) addressing a mixed group of farmers and researchers at Sega, Western Kenya, in June 2009.

Both EMBRAPA and Cornell University hosted several of Sam’s PhD students as part of GCP-supported research. “These students are now returning to Kenya with a far greater understanding of molecular breeding, which they are then sharing with us to advance our national breeding programme,” says Sam.

In parallel to his own career progression, Sam has been a strong proponent for promoting the next generation of Kenyan scientists. He has recruited many talented graduates in plant genetics, plant breeding, molecular and cell biology and biotechnology. He has also been instrumental in sourcing advanced laboratory equipment for research labs in Kenya that enable practical teaching and research in molecular biology.

“The Kenyan Government recently increased its funding for science and research,” explains Sam. “GCP has also made considerable investment into field research infrastructure. This support has not only helped us compete in the world of research but has also helped raise the profile of science as a career in this country.”

Photo: AgCommons

Sam Gudu (right) consults with Onkware Augustino (left) and Hannibal Muhtar (centre, who was contracted to work with GCP partners in planning and implementing infrastructure improvement) at the Sega phenotyping site in Western Kenya in February 2010. Field infrastructure improvements to the site were funded by GCP and implemented by its Integrated Breeding Platform, and included drip irrigation, fencing and a weather station.

The importance of supporting emerging scientists in Africa cannot be overstated, explains Sam. In fact, he considers the greatest achievements of his own career to be those that have benefitted his students, as well as Kenyan farmers.

“I wouldn’t be where I am now were it not for all the assistance I received from my teachers, lecturers and supervisors,” he says. “So I’ve always tried my best to give the same assistance to my students. It’s been hard work but very rewarding, especially when you see them graduate to become peers and colleagues.

“Having funding to support PhD students and provide them with the resources they need to complete their research is very fulfilling, and GCP has provided the funds for a number of my students. This support will go a long way to enhance the long-term success of our goal: to provide Kenyan farmers with cereal varieties that will improve their yields and make their livelihoods more secure and sustainable.”

Photo: J Agalo

Sam (second from right), with some of his young charges: Thomas Matonyei (far left), Edward Saina (second from left) and Evans Ouma (far right).

Sam and GCP exchange strengths

Sam’s work on improving maize and sorghum tolerance to acid soils, supported by GCP, is already having a positive impact. In sorghum, his team have developed five lines highly adapted to acid soils, which are currently undergoing registration for release as new varieties by the Kenyan national variety release authority. In maize, they have developed eight aluminium-tolerant lines and seven phosphorus-efficient lines.

Sam’s team share their results and materials with their partners across countries and continents. He says these lines will provide sorghum and maize breeders working in other African countries that have acid soils – including Ethiopia, Kenya, Niger, South Africa and Tanzania – with new breeding germplasm, which they can use to breed higher yielding maize and sorghum varieties for their countries’ farmers.

Photo: S Kilungu/CCAFS

A Kenyan farmer examines a sorghum variety in the field.

“Knowing which genes are responsible for aluminium tolerance and phosphorus efficiency has allowed us to more precisely select for this in our breeding programmes, reducing the time it takes to breed varieties with improved yields in acid soils without the use of costly inputs such as lime or fertiliser,” Sam explains.

“This means being able to select for, and breed, new maize varieties faster – varieties that are suitable not only for Kenyan soils, but also for other African countries.

“No one else has worked on this before in Kenya. It makes me feel that we’re truly contributing to food security for Kenyan people.”

While Sam has attracted externally funded competitive research projects throughout his career, it was the international collaborative nature of GCP that gave Sam something a little more personal: “I have improved how to communicate, how to develop relationships, how to maintain friendships. I think I have developed much more with GCP because I had many people to communicate with and I had the opportunity to visit other labs.

“GCP has not only developed my professional career but has also allowed me to interact with labs – and people – that I would probably not have interacted with.”

Photo: N Palmer/CIAT

A Kenyan maize farmer shows off her healthy crop.

More links