Generation Challenge Programme
GCP website
Integrated Breeding
IBP website
GCP Blog
GCP blog
  Connect with us GCP on Facebook GCP on Twitter GCP on LinkedIn Subscribe to GCP Newsletter Subscribe to GCP RSS feeds
Nov 062015
 

 

 Photo: C Schubert/CCAFSWhere to begin a decade-long story like that of the CGIAR Generation Challenge Programme (GCP)? This time-bound programme concluded in 2014 after successfully catalysing the use of advanced plant breeding techniques in the developing world.

Like all good tales, the GCP story had a strong theme: building partnerships in modern crop breeding for food security. It had a strong cast of characters: a palpable community of staff, consultants and partners from all over the world. And it had a formidable structure – two distinct phases split equally over the decade to first discover new plant genetic information and tools, and then to apply what the researchers learnt to breed more tolerant and resilient crops.

In October 2014, at the final General Research Meeting in Thailand, GCP Director Jean-Marcel Ribaut paid tribute to GCP’s cast and crew: “To all the people involved in GCP over the last 12 years, you are the real asset of the Programme,” he told them.

“In essence, our work has been all about partnerships and networking, bringing together players in crop research who may otherwise never have worked together,” says Jean-Marcel. “GCP’s impact is not easy to evaluate but it’s extremely important for effective research into the future. We demonstrated proofs of concept that can be scaled up for powerful results.”

A significant aspect of GCP’s legacy is the abundance of collaborations it forged and fostered between international researchers. A typical GCP project brought together public and private partners from both developing and developed nations and from CGIAR Centres. In all, more than 200 partners collaborated on GCP projects.

Photo: GCP

Just some of the extended GCP family assembled for the Programme’s final General Research Meeting in 2014.

The idea that the ‘community would pave the way towards success’ was always a key foundation of GCP, according to Dave Hoisington, who was involved with GCP from its conception and was latterly Chair of GCP’s Consortium Committee. “We designed GCP to provide opportunities for researchers to work together,” says Dave. He is a senior research scientist and program director at the University of Georgia, and was formerly Director of Research at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and Director of the Genetic Resources Program and of the Applied Biotechnology Center at the International Maize and Wheat Improvement Center (CIMMYT).

“GCP was the mechanism that would help us to complete our mission – to tap into the rich genetic diversity of crops and package it so that breeding programme researchers could integrate it into their operations,” says Dave.

Photo: ICRISAT

A little girl tucks into sorghum porridge in Mali.

The dawn of a new generation

Food security in the developing world continues to be one of the greatest global challenges of our time. One in nine people worldwide – or more than 820 million people – go hungry every day.

Although this figure is currently diminishing, a changing global climate is making food production more challenging for farmers. Farmers need higher yielding crops that can grow with less water, tolerate higher temperatures and poorer soils, and resist pests and diseases.

The turn of the millennium saw rapid technological developments emerging in international molecular plant science. New tools and approaches were developed that enabled plant scientists, particularly in the developing world, to make use of genetic diversity in plants that was previously largely inaccessible to them. These tools had the potential to increase plant breeders’ capacity to rapidly develop crop varieties able to tolerate extreme environments and yield more in farmers’ fields.

Photo: J van de Gevel/Bioversity International

Wheat varieties in a field trial.

Dave was one scientist who early on recognised the significance and potential of this new dawn in plant science. In 2002, while working at CIMMYT, he teamed up with the Center’s then Director General, Masa Iwanaga, and its then Executive Officer for Research, Peter Ninnes – another long-term member of the GCP family who at the other end of the Programme’s lifespan became its Transition Manager. Together with a Task Force of other collaborators from CIMMYT, the International Rice Research Institute (IRRI) and IPGRI (now Bioversity International), they drafted and presented a joint proposal to form a CGIAR Challenge Programme – and so GCP was conceived.

The five CGIAR Challenge Programmes were the early precursors of the current CGIAR Research Programs. They introduced a new model for collaboration among CGIAR Research Centers and with external institutes, particularly national breeding programmes in developing countries.

A programme where the spirit is palpable

Photo: N Palmer/CIAT

Failed harvest: this Ghanaian farmer’s maize ears are undersized and poorly developed due to drought.

From the beginning, GCP had collaboration and capacity building at its heart. As encapsulated in its tagline, “partnerships in modern crop breeding for food security,” GCP’s aim was to bring breeders together and give them the tools to more effectively breed crops for the benefit of the resource-poor farmers and their families, particularly in marginal environments.

GCP’s primary focus on was on drought tolerance and breeding for drought-prone farming systems, since this is the biggest threat to food security worldwide – and droughts are already becoming more frequent and severe with climate change. However, the Programme made major advances in breeding for resilience to other major stresses in a number of different crops, including acid soils and important pests and diseases. It also sought improved yields and nutritional quality.

The model for the Programme was that it would work by contracting partner institutes to conduct research, initially through competitive projects and later through commissioning. These partnerships would ensure that GCP’s overall objectives were met. For Dave, GCP set the groundwork for modern plant breeding.

“GCP demonstrated that you can tap into genetic resources and that they can be valuable and can have significant impacts on breeding programmes,” he says.

“I think GCP started to guide the process. Without GCP, the adoption, testing and use of molecular technologies would probably have been delayed.”

Photo: Meena Kadri/Flickr (Creative Commons)

Harvesting wheat in India.

Masa Iwanaga, who is now President of the Japan International Research Center for Agricultural Sciences (JIRCAS), says that the key to the proposal and ultimate success of GCP was the focus on building connections between partners worldwide. “By providing the opportunity for researchers from developed countries to partner with researchers in developing countries, it helped enhance the capacity of national programmes in developing countries to use advanced technology for crop improvement.”

While not all partnerships were fruitful, Jean-Marcel has observed that those participants who invested in partnerships and built trust, understanding and communication produced some of the most successful results. “We created this amazing chain of people, stretching from the labs to the fields,” said Jean-Marcel, discussing the Programme in a 2012 interview.

“Perhaps the best way I can describe it is as a ‘GCP spirit’ created by the researchers we worked with.

“The Programme’s environment is friendly, open to sharing and is marked by a strong sense of community and belonging. The GCP spirit is visible and palpable: you can recognise people working with us have a spirit that is typical of the Programme.”

Exploring gene banks to uncover genetic wealth

GCP started operations in 2004 and was designed in two five-year phases, 2004–2008 and 2009–2013. 2014 was a transition year for orderly closure.

Phase I focussed on upstream research to generate knowledge and tools for modern plant breeding. It mainly consisted of exploration and discovery projects, funded on a competitive basis, pursuing the most promising molecular research and high-potential partnerships.

“GCP’s first task was to go in and identify the genetic wealth held within the CGIAR gene banks,” says Dave Hoisington.

Photo: IITA

Gene bank samples give a small snapshot of cowpea diversity.

CGIAR’s gene banks were originally conceived purely for conservation, but breeders increasingly recognised the tremendous value of studying and utilising these collections. Over the years they were able to use gene banks as a valuable source of new breeding material, but were hampered by having to choose seeds almost blindly, with limited knowledge of what useful traits they might contain.

“We realised we could use molecular tools to help scan the genomes and discover genes in crops of interest and related species,” says Dave. “The genes we were most interested in were ones that helped increase yield in harsh environments, particularly under drought.”

By studying the genomes of wild varieties of wheat, for example, researchers found genes that increase wheat’s tolerance of water stress.

Photo: International Potato Center (CIP)

Sweetpotato diversity.

GCP-supported projects analysed naturally occurring genetic diversity to produce cloned genes, informative markers and reference sets for 21 important food crops. ‘Reference sets’, or ‘reference collections’ reduce search time for researchers: they are representative selections of a few hundred plant samples (‘accessions’) that encapsulate each crop’s genetic diversity, narrowed down from the many thousands of gene bank accessions available. The resources developed through GCP have already proved enormously valuable, and will continue to benefit researchers for years to come.

For example, researchers developed 52 new molecular (DNA) markers for sweetpotato to enable marker-assisted selection for resistance to sweet potato virus disease (SPVD). For lentils, a reference set of about 150 accessions was produced, a distillation down to 15 percent of the global collection studied. And for barley, 90 percent of all the different characteristics of barley were captured within 300 representative plant lines.

Photo: ICARDA

Harvesting barley in Ethiopia.

The leader of GCP’s barley research, Michael Baum, who directs the Biodiversity and Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA), says the reference set is a particular boon for a researcher new to barley.

“By looking at 300 lines, they see the diversity of 3,000 lines without any duplication,” says Michael. “This is much better and quicker for a plant breeder.”

Similarly, the lentil reference set serves as a common resource for ICARDA’s team of lentil breeders, facilitating efficient collaboration, according to Aladdin Hamweih of ICARDA, who was charged with developing the lentil collection for GCP.

“These materials can be accessed to achieve farming goals – to produce tough plants suitable for local environments. In doing this, we give farmers a greater likelihood of success, which ultimately leads to improving food security for the wider population,” Aladdin says.

An important aspect of the efforts within Phase I was GCP’s emphasis on developing genomic resources such as reference sets for historically under-resourced crops that had received relatively little investment in genetic research. These made up most of GCP’s target crops, and included: bananas and plantains; cassava; coconuts; common beans; cowpeas; chickpeas; groundnuts; lentils; finger, foxtail and pearl millets; pigeonpeas; potatoes; sorghum; sweetpotatoes and yams.

Although not all of these historically under-resourced crops continued to receive research funding into Phase II, the outcomes from Phase I provided valuable genetic resources and a solid basis for the ongoing use of modern, molecular-breeding techniques. Indeed, thanks to their GCP boost, some of these previously neglected species have become model crops for genetic and genomic research – even overtaking superstar crops such as wheat, whose highly complex genome hampers scientists’ progress.

Photo: N Palmer/CIAT

Banana harvest for sale in Rwanda.

A need to focus and deliver products

“Phase I provided plenty of opportunity for researchers to tap into genetic diversity,” says Jean-Marcel. “We opened the door for a lot of different topics which helped us to identify projects worth pursuing further, as well as identifying productive partnerships. But at the same time, we were losing focus by spreading ourselves too thinly across so many crops.”

This notion was confirmed by the authors of an external review conducted in 2008, commissioned by CGIAR. This recommended consolidating GCP’s research in order to optimise efficiency and increase outputs during GCP’s second phase, while also enhancing potential for longer term impact.

Transparency and a willingness to respond and adapt were always core GCP values. The Programme embraced external review throughout its lifetime, and was able to make dynamic changes in direction as the best ways to achieve impact emerged. Markus Palenberg, Managing Director of the Institute for Development Strategy in Germany, was a member of the 2008 evaluation panel.

“One major recommendation from the evaluation was to focus on crops and tools which would provide the greatest impact in terms of food security,” recounts Markus, who later joined GCP’s Executive Board. “This resulted in the Programme refocusing its research on only nine core crops.” These were cassava, beans, chickpeas, cowpeas, groundnuts, maize, rice, sorghum and wheat.

Photo: Mann/ILRI

Hard work: harvesting groundnut in Malawi.

GCP’s decision-making process on how to focus its Phase II efforts was partly guided by research the Programme had commissioned, documented in its Pathways to impact brief No 1: Where in the world do we start? This took global data on the number of stunted – i.e., severely malnourished – children, as a truer indicator of poverty than a monetary definition, and overlaid it on maps showing where drought was most likely to occur and have a serious impact on crop productivity. This combination of poverty and vulnerable harvests was used to determine the farming systems where GCP might have most impact.

The Programme also attempted to maintain a balance between types of crops, including each of the following categories: cereals (maize, rice, sorghum, wheat), legumes (beans, chickpeas, cowpeas, groundnuts), and roots and tubers (cassava).

The crops were organised into six crop- specific Research Initiatives (RIs) – legumes were consolidated into one – plus a seventh, Comparative Genomics, which focused on exploiting genetic similarities among rice, maize and sorghum to find and deploy sources of tolerance to acid soils.

Photo: IRRI

Child eating rice.

The research under the RIs built on GCP’s achievements in Phase I, moving from exploration to application. The change in focus was underpinned by the planned shift from competitive to commissioned projects, allowing the Programme to continue to support its strongest partnerships and research strands.

“The RIs focused on promoting the use of modern integrated breeding approaches, using both conventional and molecular breeding methods, to improve each crop through a series of specific projects undertaken in more than 30 countries,” says Jean-Marcel. “More importantly, the RIs were focused on creating new genetic material and varieties of plants that would ultimately benefit farmers.”

Such products released on the ground included new varieties of:

  • cassava resistant to several diseases, tolerant to drought, nutritionally enhanced to provide high levels of vitamin A, and with higher starch content for high-quality cassava flour and starch processing
  • chickpea tolerant to drought and able to thrive in semi-arid conditions, already providing improved food and income security for smallholder African farmers  – yields have doubled in Ethiopia – and set to help them supply growing demand for the legume in India
  • maize with higher yields, tolerant to high levels of aluminium in acid soils, resistant to disease, adapted to local conditions in Africa – and with improved phosphorus efficiency in the pipeline
  • rice with tolerance to drought and low levels of phosphorus in acid soils, disease resistance, high grain quality, and tolerance to soil salinity – with improved aluminium tolerance on the way too
Photo: CSISA

Harvesting rice in India.

Over the coming years, many more varieties developed through GCP projects are expected to be available to farmers, as CGIAR Research Centres and national programmes continue their work.

These will include varieties of:

  • common bean resistant to disease and tolerant to drought and heat, with higher yields in drier conditions – due for release in several African countries from 2015 onwards
  • cowpea resistant to diseases and insect pests, with higher yields, and able to tolerate worsening drought – set for release in several countries from 2015, to secure and improve harvests in sub-Saharan Africa
  • groundnut tolerant to drought and resistant to pests, diseases, and the fungi that cause aflatoxin contamination, securing harvests and raising incomes in some of the poorest regions of Africa
  • maize tolerant to drought and adapted to local conditions and tastes in Asia
  • sorghum that is even more robust and adapted to increasing drought in the arid areas of sub-Saharan Africa – plus sorghum varieties able to tolerate high aluminium levels in acid soils, set for imminent release
  • wheat with heat and drought tolerance – as well as improved yield and grain quality – for India and China, the two largest wheat producers in the world
Photo: N Palmer/CIAT

Groundnut harvest, Ghana.

Giving a voice to all the cast and crew

The 2008 external review also recommended slight changes in governance. It suggested GCP receive more guidance from two proposed panels: a Consortium Committee and an independent Executive Board.

Dave Hoisington, who chaired the Committee from 2010, succeeding the inaugural Chair Yves Savidan, explains: “GCP was not a research programme run by a single institute, but a consortium of 18 institutes. By having a committee of the key players in research as well as an independent board comprising people who had no conflict of interest with the Programme, we were able to make sure both the ‘players’ and ‘referees’ were given a voice.”

Jean-Marcel says providing this voice to everyone involved was an important facet of effective management. “Given that GCP was built on its people and partnerships, it was important that we restructured our governance to provide everyone with a representative to voice their thoughts on the Programme. We have always tried to be very transparent.”

The seven-member Executive Board was instated in June 2008 to provide oversight of the scientific strategy of the Programme. Board members had a wide variety of skills and backgrounds, with expertise ranging across molecular biology, development assistance, socioeconomics, academia, finance, governance and change management.

Andrew Bennett, who followed inaugural Chair Calvin Qualset into the role in 2009, has more than 45 years of experience in international development and disaster management and has worked in development programmes in Africa, Asia, Latin America, the Pacific and the Caribbean.

“The Executive Board’s first role was to provide advice and to help the Consortium Committee and management refocus the Programme,” says Andrew.

Photo: IRRI

Rice seed diversity.

‘Advice’ and ‘helping’ are not usually words associated with how a Board works but, like so much of GCP’s ‘family’, this was not a typical board. Because GCP was hosted by CIMMYT, the Board did not have to deal with any policy issues; that was the responsibility of the Consortium Committee. As Andrew explains, “Our role was to advise on and help with decision-making and implementation, which was great as we were able to focus on the Programme’s science and people.”

Andrew has been impressed by what GCP has been able to achieve in its relatively short lifespan in comparison with other research programmes. “I think this programme has demonstrated that a relatively modest amount of money used intelligently can move with the times and help identify areas of potential benefit.”

Developing capacity and leadership in Africa

As GCP’s focus shifted from exploration and discovery to application and impact between Phases I and II, project leadership shifted too. More and more projects were being led by developing-country partners.

Harold Roy-Macauley, GCP Board member and Executive Director of the West and Central African Council for Agricultural Research and Development (WECARD), advised GCP about how to develop capacity, community and leadership among African partners so that products would reach farmers.

“The objective was to make sure that we were influencing development within local research communities,” says Harold. “GCP has played a very important role in creating synergies between the different institutions in Africa. Bringing the right people together, who are working on similar problems, and providing them with the opportunity to lead, has brought about change in the way researchers are doing research.”

In the early years of the Programme, only about 25 percent of the research budget was allocated to research institutes in developing countries; this figure was more than 50 percent in 2012 and 2013.

Jean-Marcel echoes Harold’s comments: “To make a difference in rural development – to truly contribute to improved food security through crop improvement and incomes for poor farmers – we knew that building capacity had to be a cornerstone of our strategy,” he says. Throughout its 10 years, GCP invested 15 percent of its resources in developing capacity.

“Providing this capacity has enabled people, research teams and institutes to grow, thrive and stand on their own, and this is deeply gratifying. It is very rewarding to see people from developing countries growing and becoming leaders,” says Jean-Marcel.

“For me, seeing developing-country partners come to the fore and take the reins of project leadership was one of the major outcomes of the Programme. Providing them with the opportunity, along with the appropriate capacity, allowed them to build their self-confidence. Now, many have become leaders of other transnational projects.”

Emmanuel Okogbenin and Chiedozie Egesi, two plant breeders at Nigeria’s National Root Crops Research Institute (NRCRI), are notable examples. They are leading an innovative new project using marker-assisted breeding techniques they learnt during GCP projects to develop higher-yielding, stress-tolerant cassava varieties. For this project, they are partnering with the Bill & Melinda Gates Foundation, Cornell University in the USA, the International Institute of Tropical Agriculture (IITA) and Uganda’s National Crops Resources Research Institute (NaCRRI).

Chiedozie says this would not have been possible without GCP helping African researchers to build their profiles. “GCP helped us to build an image for ourselves in Nigeria and in Africa,” he says, “and this created a confidence in other global actors, who, on seeing our ability to deliver results, are choosing to invest in us.”

Photo: IITA

Nigerian cassava farmer.

A ‘sweet and sour’ sunset

Photo: Daryl Marquardt/Flickr (Creative Commons)

Maize at sunset.

Jean-Marcel defined GCP’s final General Research Meeting in Thailand in 2014 as a ‘sweet-and-sour experience’.

Summing up the meeting, Jean-Marcel said, “It was sour in terms of GCP’s sunset, and sweet in terms of seeing you all here, sharing your stories and continuing your conversations with your partners and communities.”

From the outset, GCP was set up as a time-bound programme, which gave partners specific time limits and goals, and the motivation to deliver products. However, much of the research begun during GCP projects will take longer than 10 years to come to full fruition, so it was important for GCP to ensure that the research effort could be sustained and would continue to deliver farmer-focused outcomes.

During the final two years of the Programme, the Executive Board, Consortium Committee and Management Team played a large role in ensuring this sustainability through a thoroughly planned handover.

“We knew we weren’t going to be around forever, so we had a plan from early on to hand over the managerial reins to other institutes, including CGIAR Research Programs,” says Jean-Marcel.

One of the largest challenges was to ensure the continuity and future success of the Integrated Breeding Platform (IBP). IBP is a web-based, one-stop shop for information, tools and related services to support crop breeders in designing and carrying out integrated breeding projects, including both conventional and marker-assisted breeding methods.

While there are already a number of other analytical and data management breeding systems on the market, IBP combines all the tools that a breeder needs to carry out their day-to-day logistics, plan crosses and trials, manage and analyse data, and analyse and refine breeding decisions. IBP is also unique in that it is geared towards supporting breeders in developing countries – although it is already proving valuable to a wide range of breeding teams across the world. The Platform is set up to grow and improve as innovative ideas emerge, as users can develop and share their own tools.

Beyond the communities and relationships fostered by GCP community, Jean-Marcel sees IBP as the most important legacy of the Programme. “I think that the impact of IBP will be huge – so much larger than GCP. It will really have impact on how people do their business, and adopt best practice.”

While the sun is setting on GCP, it is rising for IBP, which is in an exciting phases as it grows and seeks long-term financial stability. The Platform is now independent, with its headquarters hosted at CIMMYT, and has established a number of regional hubs to provide localised support and training around the world, with more to follow.

It is envisaged that IBP will be invaluable to researchers in both developing and developed countries for many years to come, helping them to get farmers the crop varieties they need more efficiently. IBP is also helping to sustain some of the networks that GCP built and nurtured, as it is hosting the crop-specific Communities of Practice established by GCP.

2014 may be the end of GCP’s story but its legacy will live on. It will endure, of course, in the Programme’s scientific achievements – for many crops, genetic research and the effective use of genetic diversity in molecular breeding are just beginning, and GCP has helped to kick-start a long and productive scientific journey – and in the valuable tools brought together in IBP. And most of all, GCP’s character, communities and spirit will live on in all those who formed part of the GCP family.

For Chiedozie Egesi, the partnerships fostered by GCP have changed the way he does research: “We now have a network of cassava breeders that you can count on and relate with in different countries. This has really widened our horizons.

Fellow cassava breeder Elizabeth Parkes of Ghana agrees that GCP’s impact will be a lasting one: “All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

More links

Photo: E Hermanowicz/Bioversity International

Cowpea seeds dried in their pods.

Nov 042015
 

 

Photo: G Smith/CIAT

“We raised up a new crop of cassava breeders in Africa – people who were bold enough to take up a molecular-breeding project and pursue it with support from international partners.”

So says Chiedozie Egesi, talking about the value and impact of one aspect of the CGIAR Generation Challenge Programme’s (GCP) 10-year, USD 20 million investment in building the capacity of plant breeders and scientists in developing countries.

Chiedozie, an Assistant Director and head of the cassava breeding team at Nigeria’s National Root Crops Research Institute (NRCRI), says he and others have benefited from learning the latest skills and techniques of molecular plant breeding.

“Prior to my GCP work, I was more or less a plant breeder, and a conventional one at that. Whilst I’d been exposed to molecular tools during my early work on yam and other crops, I was not applying them in my work back then. Now I and many other plant breeders are using these tools to improve a wide range of crops.”

Photo provided by Chiedozie Egesi

Chiedozie Egesi examines disease-resistant cassava on a National Root Crops Research Institute breeding plot at Umudike, Nigeria. GCP helped him to combine his traditional breeding skills with advanced molecular techniques.

Creating a core of scientists skilled in molecular plant breeding

The objective of GCP’s capacity-building efforts was to develop a cohort of scientists in developing-country research institutes who are trained and confident in the use of modern breeding tools and who can, in turn, act as champions for other scientists to adopt the techniques. Molecular-breeding techniques in particular have the potential to considerably slash the time taken to develop a new crop variety, often by more than half. This is crucial for poor smallholder farmers in Africa, Asia and Latin America, who are looking for crops that are more productive, better able to tolerate drought and which can resist the onslaught of diseases and pests.

Unfortunately, the adoption of molecular breeding in developing countries faces bottlenecks, including the shortage of well-trained personnel, inadequate high-throughput genotyping capacity, poor phenotyping infrastructure, and the lack of information systems or useful analysis tools. And this is where capacity building is so important.

GCP Director Jean-Marcel Ribaut says that building the capacity of plant breeders and scientists in developing countries is crucial in transferring scientific knowledge to those who need it the most.

“To make a difference in rural development, to truly contribute to improved food security through crop improvement and incomes for poor farmers, we knew that building capacity had to be a cornerstone in our strategy,” he says.

Jean-Marcel adds that originally the idea of capacity building was mostly a ‘proof of concept’ demonstrating the impact that this kind of investment could have within national agricultural research programmes. This took time and evolved as GCP shifted from Phase I (exploration and discovery of new genes, 2004–08) to Phase II (application and impact, centring on breeding and services to breeders, 2009–14).

Capacity building became a core part of GCP during its second phase, with three key strategies: training of students and scientists through postgraduate programmes and short courses, the development of key learning resources for such researchers, and the provision of infrastructure to support molecular-breeding activities in developing countries.

Photo courtesy of Richard Malo

Md. Sazzadur Rahman, Senior Scientific Officer in the Plant Physiology Division of the Bangladesh Rice Research Institute, twice received GCP grants to enable him build his capacity in using advanced breeding techniques in rice breeding for salt tolerance. Here he is shown in 2011 as an on-the-job trainee at the International Rice Research Institute, in which he was supported by GCP, as he compares the root growth of rice seedlings after two weeks of salinity stress. “I am always trying to use and disseminate what I learned through GCP’s support,” he says.

Capacity-building partnerships make research visible

Ndeye Ndack Diop uses words such as ‘visibility’, ‘credibility’ and ‘respect’ to describe her experiences as GCP’s Capacity Building Theme Leader and Tropical Legumes I (TLI) Project Manager.

Capacity building builds on the existing strengths of individuals, communities and organisations to reach their developmental goals by giving them the skills they need, supporting their leadership aspirations, and involving them in decision-making processes. Ndeye Ndack says such an approach requires partnerships between the developing countries’ agricultural research programmes, CGIAR Centres and other academic researchers.

“By collaborating on GCP projects, the national programmes in developing countries were able to raise the visibility of their research work not only at the regional level but at the international level,” she says.

A key feature of GCP’s capacity building was the crop-centred Communities of Practice – founded by GCP and now hosted by the Integrated Breeding Platform (IBP) – which facilitate ongoing interaction between plant breeders through peer-to-peer support and knowledge-sharing.

Ghanaian cassava plant breeder Elizabeth Parkes is an active member of the Cassava Community of Practice, which aims to facilitate and support the integration of marker-assisted selection into cassava breeding and so accelerate the production and dissemination of farmer-preferred cassava varieties that are resistant to pests and diseases and tolerant of stresses such as drought.

“With the Community of Practice you can call on other scientists; you share talk, you share ideas, you share joy. We share everything together,” Elizabeth enthuses. “GCP has had a huge impact on research in Ghana, especially for cassava, rice, maize and yam. All the agricultural research institutes and individual scientists who came into contact with GCP have been fundamentally transformed.”

Training the next generation of molecular plant breeders

GCP supported at least 101 students taking formal postgraduate courses. Of these, 34 PhD and 14 Master’s students were fully funded by GCP, and 40 PhD and 13 Master’s students were partially funded.

The intention was to prepare the next generation of plant breeders in developing countries, focusing on sub-Saharan Africa, South Asia and Southeast Asia. The work conducted by supported students was tied to specific GCP work initiatives, so students directly contributed to the Programme’s research work while learning new skills and producing new knowledge.

Photo provided by Honoré Kam.

Honoré Kam, of Burkina Faso, selecting plants in the field in the field as a student. While working on his PhD at the University of KwaZulu Natal, he received a six-month fellowship from GCP to carry out one aspect of his PhD research project related to the characterisation of the Burkina Faso rice collection using microsatellite markers. This not only provided valuable knowledge of rice diversity, it helped to launch his career in research, and he now works for the Africa Rice Center (AfricaRice).

Karl Kunert, of the University of Pretoria in South Africa, says engaging scientists early in their careers is critical to Africa’s future. He was involved in GCP’s capacity-building efforts early on, when he ran a 10-day GCP workshop on plant genetic diversity and molecular marker-assisted breeding in 2005, training 14 participants from 10 African countries.

He says capacity building has to start at the undergraduate level and extend to supporting postdoctoral scientists to visit advanced laboratories to develop research and teaching skills.

“Active partnership between universities, national research programmes and farmers in Africa is very limited,” says Karl, “and with few good examples of functioning technology transfer systems, African scientists – particularly those just starting their careers – only see bits and pieces of the big picture and are thus not as effective as they could be.”

Practical, hands-on training in molecular breeding

GCP developed and ran many customised short courses especially designed for breeders, scientists and technicians from Africa and Asia who were directly involved in GCP-supported projects.

Cornell University (USA) researcher Theresa Fulton, originally a plant breeder who now works in science education, began working on some of the capacity-building aspects when GCP started, teaching short workshops and training courses and creating materials. She says the materials developed for these courses are useful for those who have completed the courses as well as for those who then go on to teach others.

Theresa says such students who become teachers are ‘champions’: people who “got right in there; they used it [the course materials and skills], they immediately started applying it to their own data and their own plant-breeding programme. They’re also enthusiastic and ask for help when they need it.”

She says champions create the enthusiasm for other people to learn about and be part of the capacity-building initiative.

One such researcher who is enthusiastically applying molecular-breeding techniques learnt through GCP is Yonggui Xiao, a molecular plant breeder at the Institute of Crop Sciences of the Chinese Academy of Agricultural Sciences (CAAS).

“Working as part of this GCP project [within the Wheat Research Initiative] provided me with my first opportunity to practice using molecular-breeding techniques to improve the quality and yield of wheat under drought conditions,” says Yonggui. “We have so far successfully used several markers to produce an advanced variety, with higher yield and preferred qualities [taste, grain colour] under water stress, which will be released to farmers next year.”

Backing up training with learning resources GCP has created a variety of digital and print learning resources, on subjects including: plant-breeding concepts and methods, field management, phenotyping and screening protocols, the application of markers in breeding, genomics and comparative genomics, drought phenotyping, genetic resources policies and design and analysis. Through both the GCP website and the Integrated Breeding Platform (IBP) portal, GCP also provides access to learning resources and other capacity-building opportunities developed by other institutions.

Innovative long-term training in integrated plant breeding

GCP’s short, practical courses were consolidated in 2012 into a comprehensive three-year Integrated Breeding Multiyear Course (IB–MYC). Implemented through IBP, the course focused on modern molecular-breeding strategies and informatics technologies.

The IB–MYC training programme consisted of an annual two-week residential programme run over three years – a total of six weeks of intensive training workshops supported by learning and data-management resources available through the IBP website.

The course was aimed at scientists directly and indirectly involved in breeding projects associated with the nine crops covered by GCP’s seven research initiatives, as well as soybean.

At the end of the three years, trainees were expected to have high proficiency in conventional and molecular-breeding methodologies and IBP tools and services. They also learnt about data collection and management and statistics and how to use IBP’s Breeding Management System (BMS) to design and manage their activities.

IB–MYC trainees who had never carried out molecular-breeding activities were also offered the opportunity to initiate a small project during the course. This introduced the participants to key techniques and tools, such as genotyping and the use of single nucleotide polymorphism (SNP) markers, and allowed them to analyse their own data during the training.

GCP’s original goal was to train a total of 180 scientists, with a target of 60 from each of three regions: Eastern and Southern Africa, West and Central Africa, and South and Southeast Asia. After receiving a list of nominees, GCP selected candidates based on a survey sent to them for completion, with 170 then able to attend in the first year.

There was some unavoidable attrition in the number of participants over the three years of the course. Some moved on to new jobs, and others were unable to attend later sessions for reasons such as illness, scheduling conflicts with other commitments, or difficulty in obtaining visas or authorisation to attend. A handful failed their assignments. However, most of the participants stayed the distance – indeed, attrition rates were unusually low, with interest in the course remaining above expectations. A total of 129 participants from 26 countries attended in 2014, the final year, of whom 31 (24%) were women.

IB–MYC facilitators and trainers came from a range of institutions: GCP; Wageningen University and Research Centre, the Netherlands, and partners (Universidad de la República, Uruguay, and Makerere University, Uganda); Cornell University’s Genomic Diversity Facility; the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); and the Africa Rice Center.

Theresa says many of the participants had data of their own, which they were encouraged to bring and upload into the system: “By their third and final year it was very hands-on. No more lecturing.”

Daniel Ambachew, then a bean breeder at the Southern Agricultural Research Institute in Ethiopia, was an IB–MYC participant and is a wholehearted convert to the BMS. “It is a really fantastic tool,” said Daniel in subsequent reflections. “During the course we learnt about the importance of recording clear and consistent phenotypic data, and IBP helps us to do this as well as store it in a database. It makes it easier to refer to and learn from the past. I’m now trying to pass on the knowledge I’ve learnt as well as create and implement a data-management policy for all plant breeders and technicians in our institute.”

Mounirou El-Hassimi Sow, a rice breeder from the Africa Rice Center in Benin, also champions the knowledge he gained through IB–MYC.

“When I started working on a GCP project, the aim was to implement a marker-assisted recurrent selection (MARS) programme,” says Mounirou.

“For such a project you need precision in your selection.”

“When we started, I did not have the tools [to implement MARS]. But through GCP, I had access to a tool that was user-friendly, and I was trained how to use that tool. Now I’m selecting [breeding material] with more precision – I’m not fishing anymore during my selections.”

Mounirou also makes a special observation that the programme was not just about learning and using new tools.

“As a newcomer in the research area, I think I was very lucky to be here at that moment when GCP – all the funding, the tools, the network – appeared,” he says.

“If I had been doing my research 20 years ago, I would not have this chance. Beyond the tools that I’ve learnt, that I’m now applying, I’ve met many people; I think this is more valuable than even the tools.

“I know the tools. I know how to use them. But at the end of the day I may face some challenges using the tools. Now I know whom to refer it to when I have these kinds of challenges.”

Theresa says there has been a growing enthusiasm for the course from year to year: “It’s been a pleasure for me to see people who were sceptics in the beginning change their minds.

“I can think of a couple of people in particular who asked, ‘Why should I use molecular markers? They’re expensive’,” she says. “Some of those people are now the most enthusiastic users of the system, so that’s been great!”

Photo provided by Daniel Ambachew

Daniel Ambachew, graduate of the Integrated Breeding Multiyear Course, has recently begun his PhD in Biotechnology at Tennessee State University in the USA, where he also works as a graduate research assistant in Matthew Blair’s plant genomics lab. Here he is shown preparing bean leaf sample for DNA extraction. He is currently on study leave from his home institute, Ethiopia’s Southern Agricultural Research Institute (SARI), where he is a Bean Breeder and Bean Improvement Program Leader, and he will be carrying out the field experiments for his doctoral studies at SARI. Meanwhile, he continues to be a committed BMS user and champion – he says that it has helped him a lot in his work, and he is now trying to introduce it in his new lab, where his colleagues are already interested, as well as at SARI.

Providing infrastructure and other support to breeders

It’s not enough to have the right skills in place; it’s also important that plant breeders have the resources and infrastructure they need to apply those skills. This may include irrigation systems, greenhouses, weather stations and electronic equipment such as tablets for field and laboratory data collection. Such resources mean that quality data can be collected, stored and accessed.

Capacity building must include infrastructure and maintenance to ensure the longevity and usefulness of people’s skills, according to GCP consultant Hannibal Muhtar, who has worked in the area of support services for most of his life. Hannibal was recruited by GCP to visit research sites of ongoing or potential GCP-funded projects across Africa and identify those where effective scientific research might be hampered by significant gaps in three fundamental areas: infrastructure, equipment and support services. He selected 19 research sites in Burkina Faso, Ethiopia, Ghana, Kenya, Mali, Niger, Nigeria and Tanzania.

Hannibal says the researcher is like a surgeon who needs to get to the operating theatre and not have to worry about equipment and anaesthesia.

“I ensure researchers have what they need,” he says. “I solve the problem from the physical side. They do the biology, I do the physics.”

Photos provided by Asnake Fikre

Greenhouse under construction (left), and ready for use (right), at the Ethiopian Institute of Agricultural Research (EIAR), built with GCP support to boost its chickpea improvement programme. Following its erection in 2013, Asnake Fikre, Crop Research Director for EIAR and former TLI country coordinator of the chickpea work in Ethiopia, commented that “the greenhouse facility will move the programme’s performance forward significantly.”

Once infrastructure such as irrigation and pumps for field trials is in place, it also needs to be kept working. Hannibal says GCP recognised the need for infrastructure, “as well as for maintenance and capacity building of people who operate the systems.”

“That is the safety net of any system,” he explains. “If you don’t maintain it, you don’t have much going.”

The Crops Research Institute (CRI) of Ghana’s Council for Scientific and Industrial Research (CSIR) is one of the organisations reaping the benefits, at two of its research sites, of GCP’s infrastructural capacity-building component.

“We got GCP support to kick-start molecular biology research activities,” says Marian Quain, a senior research scientist at CRI. “It provided us with laboratory chemicals, reagent and equipment. My lab also received funding under the Genotyping Support Service initiative to characterise hundreds of sweetpotato, yam and cassava accessions.

“This support from GCP contributed immensely to transforming the lab.”

Capacity building à la carte One of GCP’s capacity-building strategies was designed to be inherently flexible. The Programme provide 14 grants, each consisting of about USD 10,000, to small teams for 18 months. Each grant supported diverse kinds of capacity-building activities, specific to the demands and needs of the team in the context of the research they conducted with GCP. GCP has also extended travel grants to many country programme collaborators, enabling them to attend important research meetings, workshops and symposia.

Meeting the challenges and looking towards the future

Ndeye Ndack says GCP has worked “to ensure that within partnerships, there is respect and fairness among different partners.

“We made sure our national partners had the capacity to move beyond the experimentation, to analyse breeding material and data themselves rather than depend on outside people.

“They are empowered to take advantage of their own data and follow progress within their own breeding programmes.”

She says that to stay successful, “We have to make sure we continue to be responsive so people will continue to adopt and not be discouraged as they might by a team that was not giving them the support they needed.”

The feedback has been very positive.

“What I hear from our IB–MYC trainees is that they feel, year after year, much more comfortable with molecular breeding and with tools like the BMS, and some of them are already implementing these at the level of their team and laboratory,” Ndeye Ndack says.

“Now, of course, the challenge will be to make sure that they implement it beyond these groups, at the institutional and organisational level.”

Jean-Marcel agrees that the final challenge for capacity building was to move beyond GCP support so that the skills and science were sustained in each country: “We needed to facilitate these country breeding programmes to take ownership of the science and products so they could continue it locally.”

He says IBP is playing key a role in sustaining and growing this movement through its regional hubs, which provide training, learning support and networking opportunities.

Leadership within countries will also be vital for the ongoing sustainability of molecular-breeding programmes in developing countries – GCP has helped to create new leaders.

Many of the plant breeders from developing countries have moved from just doing the research, in the early days of GCP, to increasingly taking on active leadership roles in more recent years. More than half of GCP’s projects in its second phase have been led by scientists from developing countries.

Elizabeth Parkes is one such person: she was appointed as leader of Ghana’s GCP-supported cassava research in the second phase of the Programme.

“When I first joined GCP,” Elizabeth recalls, “I saw myself as somebody from a national research programme being given a place at the table; my inputs were recognised and what I said carried weight in decision-making.

“GCP has made us visible and attractive to others; we are now setting the pace and doing science in a more refined and effective manner.”

Over ten years of support, GCP has fostered a new generation of plant breeders, champions and leaders, with the skills and abilities to protect farmers’ futures for many years to come.

More links