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success achieved through conventional breeding so far in 
most of the pulse crops will not be enough to feed the ever 
increasing population. In this context, genomics-assisted 
breeding (GAB) holds promise in enhancing the genetic 
gains. Though pulses have long been considered as orphan 
crops, recent advances in the area of pulse genomics are 
noteworthy, e.g. discovery of genome-wide genetic mark-
ers, high-throughput genotyping and sequencing platforms, 
high-density genetic linkage/QTL maps and, more impor-
tantly, the availability of whole-genome sequence. with 
genome sequence in hand, there is a great scope to apply 
genome-wide methods for trait mapping using association 
studies and to choose desirable genotypes via genomic 
selection. It is anticipated that GAB will speed up the pro-
gress of genetic improvement of pulses, leading to the rapid 
development of cultivars with higher yield, enhanced stress 
tolerance and wider adaptability.

Introduction

The Fabaceae/Leguminosae or legume family with ~20,000 
species is the third largest family in the plant kingdom 
and second most important after Gramineae or Poaceae 
as mainstays for human food/protein security (Cannon 
et al. 2009; Gepts et al. 2005; weeden 2007; Young et al. 
2003). Legumes are endowed with the unique property of 
biologically fixing atmospheric nitrogen via symbiosis, 
making them an integral component of sustainable agricul-
tural production systems (Zhu et al. 2005). In the Fabaceae, 
grain legumes or pulses are particularly important in sup-
plying adequate quantity of lysine-rich protein to humans, 
thereby complementing the conventional cereal-based 
carbohydrate-rich diets, which are otherwise deficient in 
lysine and tryptophan (Broughton et al. 2003; Ufaz and 
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Galili 2008). Additionally, pulses are potential sources of 
several essential minerals, vitamins and secondary metabo-
lites like isoflavonoids in human diets (Cannon et al. 2009). 
Concerning protein deficiency, it is important to emphasize 
that globally over one billion people are currently suffer-
ing from protein and micronutrient malnutrition (Godfray 
et al. 2010). In this context, pulses by virtue of their high 
protein, vitamin and mineral content play a crucial role in 
alleviating micronutrient deficiencies, undernourishment or 
protein calorie malnutrition (PCM), especially in the less-
developed countries (Broughton et al. 2003).

FAO categorizes only those legumes as pulses which 
are harvested exclusively for grain purpose, thereby rec-
ognizing a total of 11 pulse crops (http://faostat.fao.org/; 
Akibode and Maredia 2011). In terms of worldwide pulse 
production, a total of 70.41 million tons (m t) are harvested 
annually from 77.5 million (m) ha area with a productivity 
of 907 kg/ha (FAOSTAT 2012). Almost 90 % of the global 
pulse production (62.98 m t) is shared by major pulse 
crops, viz. dry beans (mainly common bean), chickpea, dry 
peas (pea), cowpea, pigeonpea, lentil and faba bean. Based 
on their adaptability to tropical and temperate agro-climatic 
conditions, these pulse crops can be further categorized 
into two distinct groups, i.e. (1) warm season crops (com-
mon bean, pigeonpea and cowpea) and (2) cool season 
crops (pea, chickpea, lentil and faba bean) (Cannon et al. 
2009; Young et al. 2003; Zhu et al. 2005). Interestingly, 
chickpea, pea and lentil are among the founder grain crops, 
which experienced domestication early in pre-history (c. 
11,000 years ago), and these paved the way for establish-
ment of modern agriculture (Zohary and Hopf 2000). The 
pulse crops have always been a key contributor to maintain-
ing sustainability of the farming systems in the semi-arid 
and sub-tropical world and in generating livelihood and 
food security to millions of resource-poor people inhabit-
ing these regions (Broughton et al. 2003).

Owing to their immense agricultural value, exhaustive 
research has been done for pulse improvement through 
conventional breeding, resulting in the development and 
release of several high-yielding varieties (Gaur et al. 
2012; Pérez de la vega et al. 2011; Saxena 2008; Singh 
2005; Torres et al. 2011), followed by an increase in the 
global area under pulses from 64 to 77.5 m ha over the 
last 50 years (FAOSTAT 2012). with respect to produc-
tivity, however, appreciable gains have not been mate-
rialized so far in any of the major pulse crops (Fig. 1). 
The productivity of major pulse crops remains dismally 
low, around 1,000 kg/ha, and large gap exists between 
their potential and actual yields (FAOSTAT 2012; var-
shney et al. 2013a). In this context, integrating genomic 
tools with conventional breeding methods holds the key 
to accelerate the progress of crop improvement. Unlike 
cereals like wheat and barley (which were domesticated 

almost at the same time as pulses), limited efforts have 
been directed towards undertaking molecular breeding or 
more appropriately genomics-assisted breeding (GAB) 
of pulse crops (Muchero et al. 2009a; Muehlbauer et al. 
2006; Timko et al. 2007; varshney et al. 2010). One likely 
reason is the limited attention of the international research 
community to these pulse crops. As a result, there has 
been a dearth of prerequisite genomic tools to commence 
GAB at a larger level (varshney et al. 2009a). These 
crops, therefore, are often referred to as “orphan crops”. 
Nevertheless, in some pulse crops, large-scale genomic 
tools, technologies and platforms have become available 
in recent years (Gaur et al. 2012; Gepts et al. 2008; Kelly 
et al. 2003; Muehlbauer et al. 2006; Rubiales et al. 2011; 
varshney et al. 2013a), thereby opening up new avenues 
for practising GAB. This is a highly opportune time for 
reframing our breeding strategies, allowing judicious and 
routine use of genomic tools for genetic enhancement of 
modern cultivars as well as diversification of the primary 
gene pool through introduction of desirable alien alleles 
from crop wild relatives (CwRs). Advances in genomics 
and molecular breeding have been discussed in details for 
chickpea and pigeonpea in some recent reviews (varshney 
et al. 2013a). However, not much information is available 
about recent developments in case of other pulse crops. 
In consideration of the above, this review summarizes 
the production scenario and constraints, the available 
genomic resources and their downstream applications as 
well as prospects for GAB in four selected pulse crops, 
i.e. cowpea (Vigna unguiculata (L.) walp.), pea (Pisum 
sativum L.), lentil (Lens culinaris Medik.) and faba bean 
(Vicia faba L.).
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Fig. 1  Global trends in productivity of four major pulse crops. The 
figure illustrates trends in productivity of major pulse crops witnessed 
over the last five decades
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Global production scenario and major yield constraints

Although there are several warm and cool season pulse 
crops that make important portion of diets of the poor in 
developing countries, four major pulse crops, namely, cow-
pea, pea, lentil and faba bean, have been included here for 
discussion.

Cowpea

Cowpea (Vigna unguiculata (L.) walp.), also referred to 
as black-eyed pea, crowder pea or lobia, is a self-polli-
nating diploid (2n = 2x = 22) species with an estimated 
genome size of 620 Mb (Chen et al. 2007; Singh 2005). 
It is an important warm season grain legume cultivated in 
~30 countries (Singh 2005). Interestingly, more than 80 % 
of dry cowpea produce comes from three countries (Niger, 
Nigeria and Burkina Faso) of west Africa that cover nearly 
83 % of the global cowpea area (FAOSTAT 2012; Popelka 
et al. 2006). Therefore, cowpea remains the primary source 
of income for small-scale farmers practising agriculture in 
dry Savannah of sub-Saharan Africa. Furthermore, cowpea 
also provides a cheap and highly nutritious feed for live-
stock in tropical west and Central Africa (Kamara et al. 
2012). Asparagus bean (also known as snake bean or yard-
long bean) is another cultivar group (cv.-gr. sesquipedalis) 
of cowpea that reflects remarkable morphological vari-
ations from African cowpea (cv.-gr. unguiculata) in plant 
architecture, growth habit and various pod-/seed-related 
characters (Kongjaimun et al. 2013; Singh 2005; Timko 
et al. 2007; Xu et al. 2013). Asparagus bean is grown pri-
marily in Southeast and east Asia for its very long and ten-
der pods, which are harvested at the immature stage and 
considered a highly nutritious vegetable (Xu et al. 2010, 
2011a, b, 2012a).

Globally, cowpea has shown an increasing trend in its 
cultivation area from 2.41 m ha to 10.68 m ha over the last 
five decades (FAOSTAT 2012). The miserably low produc-
tivity of cowpea (~470 kg/ha) is largely attributable to a 
variety of constraints that prevail in cowpea-growing areas 
including diseases such as bacterial blight (Xanthomonas 
axonopodis pv. vignicola (Burkh.) Dye), rust (Uromyces 
phaseoli var. vignae Barclay), Sphaceloma scab (Elsinoe 
phaseoli Jenkins) and leaf spot (Septoria vignicola Rao), 
and insects/pests such as legume flower thrips (Megaluro-
thrips sjostedti Trybom), pod borer (Maruca vitrata Fab-
ricius) and storage weevil (Callosobruchus maculatus 
Fabricius) (Singh 2005). Apart from the above-mentioned 
constraints, instances of severe parasitism by weeds (Striga 
gesnerioides (willd.) vatke and Alectra vogelii (L.) Benth) 
resulting in 85–100 % loss have also been observed in 
cowpea (Kamara et al. 2012). The inherent tolerance to 
drought, heat and poor soil fertility makes cowpea an 

attractive crop for low-input farming systems in the Suda-
nian and Sahelian semi-arid regions of Africa (Hall et al. 
2003; Hall 2004; Muchero et al. 2009a; Popelka et al. 
2006). However, despite its high tolerance to drought, con-
siderable reduction in cowpea yield has been reported due 
to prolonged drought periods in sub-Saharan Africa (Hall 
et al. 2003; Hall 2004; Muchero et al. 2009b).

Pea

Pea (Pisum sativum L.) is a self-pollinating crop with 
4,063 Mb genome organized into seven pairs of homolo-
gous chromosomes (2n = 2x = 14) (Arumuganathan and 
earle 1991). worldwide, a total of 9.86 m t of dry peas is 
harvested annually with exceptionally high productivity 
(1,558 kg/ha). The three major pea producers, i.e. Rus-
sian Federation, Canada and China, collectively contribute 
around 56 % (5.57 m t) and 54 % (3.39 m ha) to the global 
production and area, respectively (FAOSTAT 2012). Inter-
estingly, no major antinutritional factor (ANF) has been 
reported in pea seeds, thereby making dry pea seeds a high-
quality source for livestock feed and human consumption. 
Quite noticeably, almost half of the dry pea seeds harvested 
globally are used to feed livestock (Rubiales et al. 2011).

Among several biotic stresses affecting pea yields, 
Fusarium wilt (F. oxysporum f. sp. pisi (van Hall) Snyd. 
and Hans.), Ascochyta blight, a complex fungal disease 
caused by Mycosphaerella pinodes (Berk. and Blox.) vest-
ergr., Phoma medicaginis Malbr. and Roum. var. pinodella 
and Ascochyta pisi Lib.), root rot (Aphanomyces euteiches 
Drech.) and powdery mildew (Erysiphe pisi DC) are the 
most devastating diseases causing significant losses (Dixon 
1987; Rubiales et al. 2011; Timmerman-vaughan et al. 
2002; Xue et al. 1997). In addition, one insect pest that has 
also emerged as a serious threat to pea production is pea 
aphid, Acyrthosiphon pisum (Harris), causing complete 
crop failure under conditions of severe infestations (wale 
2002).

Lentil

Lentil (Lens culinaris Medik.) is a self-pollinated diploid 
(2n = 2x = 14) crop with a large genome size (4,063 Mb) 
(Arumuganathan and earle 1991). From the standpoint of 
global production, lentil stands fifth with 4.55 m t being 
produced annually from an area of 4.24 m ha (FAOSTAT 
2012). Major lentil-growing countries are India, Australia, 
Canada and Turkey, together producing more than 73 % of 
the world’s lentil (FAOSTAT 2012). Due to higher protein 
content and better digestibility, lentil contributes to nutri-
tional and food security for the people in the northern tem-
perate, Mediterranean and sub-tropical savannah regions 
(Sharpe et al. 2013).
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various fungal diseases affecting lentil yield substan-
tially have been reported, which include Ascochyta blight 
(A. lentis vassilievsky), Fusarium wilt (F. oxysporum f.sp. 
lentis vasd. and Srin.), anthracnose (C. truncatum (Sch-
wein.) Andrus and Moore), blight (Stemphylium botryosum 
wallr.), rust (Uromyces viciae-fabae Pers.), collar rot (Scle-
rotiun rolfsii Sacc.), root rot (Rhizoctonia solani Kühn), dry 
root rot (R. bataticola Taub.) and white mould (Sclerotinia 
sclerotiorum (Lib.) de Bary) (Ford et al. 2007; Muehlbauer 
et al. 2006; Pérez de la vega et al. 2011). Aside from biotic 
factors, lentil production is also vulnerable to temperature 
extremities including cold and heat stresses and others like 
drought and salinity (Muehlbauer et al. 2006).

Faba bean

Faba bean (Vicia faba L.), also known as broad bean or 
horse bean, has six pairs of chromosomes and 13,000 Mb 
genome representing one of the largest genomes among 
legumes that is almost three times greater than pea and 
lentil (Cruz-Izquierdo et al. 2012; Yang et al. 2012; Young 
et al. 2003). It is cultivated in about 60 countries covering a 
total of 2.43 m ha area with an annual production of 4 m t 
(FAOSTAT 2012). worldwide, China (0.95 m ha), ethiopia 
(0.45 m ha), Morocco (0.18 m ha) and Australia (0.16 m ha) 
are the main faba bean-growing countries. China alone pro-
duces 35 % (1.4 m t) of the global dry faba beans followed 
by ethiopia (0.71 m t) and Australia (0.42 m t). It is a dual-
purpose crop, which not only provides inexpensive proteins 
for human consumption (particularly in western Asia and 
northern Africa), but also serves as a prime livestock feed 
in europe and Australia (Alghamdi et al. 2012; ellwood 
et al. 2008; Torres et al. 2006, 2011; Zeid et al. 2009).

Notwithstanding the higher productivity of faba bean 
(1,666 kg/ha), the global area under faba bean cultiva-
tion has declined over the last five decades (FAOSTAT 
2012). Faba bean production is constrained by a number 
of biotic factors including fungal, bacterial and viral dis-
eases, nematodes and pests (Gnanasambandam et al. 2012). 
Amongst various diseases, rust (Uromyces viciae-fabae 
(Pers.) J. Schröt.), chocolate spot (Botrytis fabae Stard.), 
Ascochyta blight (A. fabae Sperg.) and downy mildew 
(Peronospora viciae (Berk.) Caspary) are of considerable 
economic importance (Cubero and Nadal 2005; Gnanasam-
bandam et al. 2012; Torres et al. 2006, 2011). Apart from 
the diseases mentioned above, zonate spot (Cercospora 
zonata wint.), roo rot (F. solani Mart.) and blister disease 
(Olpidium viciae Kusano) also cause significant yield loss, 
particularly in China (Li-Juan et al. 1993; Saxena et al. 
1993). In addition, the viral diseases that negatively affect 
faba bean production involve broad bean mosaic virus 
(BBMv), broad bean wilt virus (BBMv), turnip mosaic 
virus (TuMv), soybean mosaic virus (SMv) and cucumber 

mosaic virus (CMv) (Saxena et al. 1993). Among impor-
tant insect pests, faba bean beetle (Bruchus rufimanus 
Boheman), medic aphid (Aphis medicaginis Koch and 
Myzus persicae) and root nodule weevil (Sitona amuren-
sis Faust and S. lineatus L.) are the other damaging agents 
(Bardner 1983; Cubero and Nadal 2005; Li-Juan et al. 
1993; Saxena et al. 1993). Moreover, frequent occurrence 
of a parasitic weed broomrape (Orobanche crenata Forks) 
often presents a great menace to faba bean cultivation in the 
Mediterranean region, North Africa and the Middle east 
(Díaz-Ruiz et al. 2009a; Rubiales and Fernández-Aparicio 
2012; Torres et al. 2010) and several reports have docu-
mented yield loss up to 80 % (Gressel et al. 2004) or even 
complete crop failure (Sauerborn and Saxena 1986).

Besides biotic constraints, faba bean also suffers from 
drought and cold stresses, frost injury and presence of 
ANFs in seeds (Arbaoui et al. 2008; Torres et al. 2011). 
Therefore, to stabilize faba bean yield, development of gen-
otypes exhibiting resistance to the above-mentioned biotic 
and abiotic stresses has always been a prime objective in 
faba bean breeding. Moreover, the partial cross-pollinating 
nature and existence of cytoplasmic genetic male sterility 
(CGMS) have steered faba bean breeding towards develop-
ment of CGMS-based hybrids for exploitation of heterosis 
and enhancement of productivity (Bond 1989; Link et al. 
1996, 1997).

Genomic resources

Concerning pulse genomics, a rapid progress has been 
witnessed over the last 10 years generating a plethora of 
genomic tools for their extensive use in pulse improvement 
programmes. These resources include (1) different kinds of 
bacterial artificial chromosome (BAC)-derived resources 
like BAC libraries, BAC-end sequences (BeSs), BAC-asso-
ciated simple sequence repeat (SSR) markers (BeS-SSRs) 
and physical maps; (2) genome-wide distributed molecular 
markers and automated genotyping platforms; and (3) the 
transcriptome and whole-genome assemblies.

BAC-based resources

BAC libraries are valuable tools for facilitating various 
genetic applications such as DNA marker development, 
gene/QTL cloning, construction of physical map and BAC-
to-BAC genome sequencing (Farrar and Donnison 2007). 
In pulses, several BAC/BIBAC libraries were established, 
providing extensive genome coverage in the respec-
tive crops, viz. cowpea (~9×) and pea (~2.2×) (Coyne 
et al. 2007; Kami et al. 2006). To date, however, no BAC 
libraries have been reported for lentil and faba bean. BAC 
libraries have been used for developing physical map and 
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assembling the genome sequences. In this context, BACs 
are subjected to fingerprinting and these fingerprints are 
then used as seeds for the development of genome-wide 
physical maps and in the determination of minimum tiling 
path (MTP) for assembling the whole-genome sequence 
(venter et al. 1996). A high-quality BAC-based physical 
map is now available for cowpea (790 contigs and 2,535 
singletons, http://phymap.ucdavis.edu/cowpea/).

To enhance the accuracy of physical maps or assembling 
the sequences of BACs in the whole-genome sequencing, 
selected or entire set of BACs are also used for generating 
BeSs. Additionally, the utility of these BeSs in large-scale 
marker development has also been demonstrated through in 
silico SSR mining in cowpea (Xu et al. 2011a). These BeS-
associated markers such as BeS-SSRs represent the poten-
tial anchoring points for integrating genome-wide physical 
maps with high-density genetic maps (Córdoba et al. 2010).

Genome-wide distributed molecular markers

Starting from the introduction of hybridization based mark-
ers, viz. restriction fragment length polymorphism (RFLP), 
consistent improvements have been made in the area of 
DNA marker development and genotyping (see Bohra 
2013). To this end, the traditional DNA marker technolo-
gies are being increasingly replaced by next-generation 
sequencing (NGS)-based high-throughput (HTP) discovery 
of DNA markers, especially single nucleotide polymor-
phisms (SNPs) (varshney et al. 2009b). Further, on account 
of their amenability to automated genotyping platforms, 
SNPs have emerged as the preferred markers for next 
generation, substituting the earlier hybridization as well 
as polymerase chain reaction (PCR)-based assays (varsh-
ney et al. 2009b). Through in silico mining of expressed 
sequence tags (eSTs), transcriptomes and whole-genome 
sequence, a large number of SSRs and SNPs have recently 
been detected in pulse crops (Table 1). For example, mas-
sive-scale SSR markers including 2,393 and 28,503 SSRs 
were developed in pea and faba bean, respectively, using 
Roche 454-FLX sequencing (Kaur et al. 2011; Yang et al. 
2012). Likewise, thousands of SNP markers were identified 
in pea (50,000) and lentil (44,879) using NGS technologies 
such as Roche 454-FLX and Illumina Genome Analyzer 
(GA) (Sharpe et al. 2013; Sindhu et al. 2013).

Interestingly, the discovery of high-density SNP mark-
ers is complemented with the establishment of ultra HTP 
genotyping assays like Illumina GoldenGate (GG) and 
Infinium assays, which are able to accommodate up to 
3,000 and 4 million SNPs, respectively (Deschamps et al. 
2012). Informative SNPs were chosen for designing robust 
GG assays and as a result 768-/1,536-SNPs based GG 
platforms have become available in cowpea (Lucas et al. 
2011; Muchero et al. 2009a, 2013), pea (Duarte et al. 2014; 

Leonforte et al. 2013; Sindhu et al. 2013), lentil (Kaur et al. 
2013; Sharpe et al. 2013) and faba bean (Kaur et al. 2014). 
Further, increasing number of re-sequencing database in 
coming days will allow identification of more SNPs and, 
consequently, HTP cost-effective genotyping assays using 
only informative SNPs will become available in all pulse 
crops.

Due to major shortcomings of GG and Infinium assays 
including cost-prohibitive designing and low flexibility, 
some customized SNP detection systems like competi-
tive allele-specific PCR (KASPar) have been introduced 
to incorporate small to moderate number of SNPs for spe-
cific applications (Hiremath et al. 2012; Khera et al. 2013; 
Kumar et al. 2012; Saxena et al. 2012). Given the flexibility 
mentioned above, the KASPar assay was used for typing 
SNPs in asparagus bean (Xu et al. 2012a), lentil (Fedoruk 
et al. 2013; Sharpe et al. 2013) and faba bean (Cottage 
et al. 2012). Similarly, another custom-designed Illumina 
veracode assay was employed for genotyping a set of 384 
SNP markers in pea (Deulvot et al. 2010). Utilization of 
such automated genotyping systems not only enhances the 
speed of genotyping, but also ensures better accuracies in 
SNP typing. Apart from SNPs, diversity arrays technol-
ogy (DArT) is another second-generation automated plat-
form that enables genotyping of hundreds to thousands of 
genome-wide DNA markers with great precision. Success-
ful implementation of DArT system has been reported in 
several pulse crops including chickpea and common bean 
for genetic linkage mapping and genetic diversity esti-
mation (Briñez et al. 2012; Thudi et al. 2011). However, 
among the pulse crops presented here, to our knowledge 
DArT markers have not been applied so far.

Transcriptome and genome assemblies

Transcriptome assemblies are excellent genomic resources 
to capture the gene space for both basic and applied stud-
ies. Transcriptome assemblies facilitate detailed com-
parative analyses across different genera and discovery of 
functionally relevant markers (FMs), especially eST-SSR, 
SNP, intron-targeted primer (ITP) or intron spanning region 
(ISR) markers (Agarwal et al. 2012; Kudapa et al. 2012). 
More importantly, in case of crops like pea, lentil and faba 
bean with large and poorly characterized genomes, compre-
hensive transcriptome assemblies offer a means to directly 
access the gene space and causative functional polymor-
phisms, thus yielding valuable insights about the genome 
organization.

Initially, Sanger sequencing of c-DNA libraries gener-
ated transcriptomics resources such as eSTs for various 
crop species. For instance, a total of 183,118 eSTs were 
recovered through sequencing of nine c-DNA libraries in 
cowpea (Muchero et al. 2009a). Recently, transcriptome/

http://phymap.ucdavis.edu/cowpea/


1268 Theor Appl Genet (2014) 127:1263–1291

1 3

Ta
bl

e 
1 

 L
is

t o
f 

av
ai

la
bl

e 
ge

no
m

ic
 to

ol
s 

in
 s

el
ec

te
d 

pu
ls

e 
cr

op
s

G
en

om
ic

 R
es

ou
rc

es
C

ow
pe

a
Pe

a
L

en
til

Fa
ba

 b
ea

n

M
ap

pi
ng

 r
es

ou
rc

es

 T
ra

di
tio

na
l b

i-
pa

re
nt

al
 p

op
ul

at
io

ns
~3

0 
(i

nc
lu

di
ng

 S
es

qu
ip

ed
al

is
 g

ro
up

) 
(L

uc
as

 
et

 a
l. 

20
11

; M
uc

he
ro

 e
t a

l. 
20

09
a,

 b
; O

ue
-

dr
ao

go
 e

t a
l. 

20
01

, 2
00

1,
 2

01
2)

~2
5 

(M
cP

he
e 

20
07

; R
ub

ia
le

s 
et

 a
l. 

20
11

)
~2

0 
(F

or
d 

et
 a

l. 
20

07
; P

ér
ez

 d
e 

la
 v

eg
a 

et
 a

l. 
20

11
)

~ 
20

 (
A

rb
ao

ui
 e

t a
l. 

20
08

; 
M

a 
et

 a
l. 

20
13

; T
or

re
s 

et
 a

l. 
20

06
)

 S
ec

on
d-

ge
ne

ra
tio

n 
po

pu
la

tio
ns

 li
ke

 
M

A
G

IC
/N

A
M

In
 p

ro
gr

es
s

–
–

–

R
ev

er
se

 g
en

et
ic

s 
re

so
ur

ce
s

 T
IL

L
IN

G
 p

op
ul

at
io

n
–

Tw
o 

se
ts

 c
om

pr
is

in
g 

3,
02

7 
an

d 
4,

70
4 

lin
es

 (
D

al
m

ai
s 

et
 a

l. 
20

08
; T

ri
qu

es
 

et
 a

l. 
20

07
)

–
–

B
A

C
-t

oo
ls

 B
A

C
 li

br
ar

ie
s

3 
(Y

u 
20

12
)

2 
(Y

u,
 2

01
2)

–
–

 B
e

Ss
30

,5
27

 (
B

ar
re

ra
-F

ig
ue

ro
a 

et
 a

l. 
20

11
)

–
–

–

 P
hy

si
ca

l m
ap

s
10

 ×
 c

ov
er

ag
e 

(C
lo

se
 e

t a
l. 

20
11

)
–

–
–

G
en

et
ic

 m
ar

ke
rs

 G
en

om
ic

 S
SR

s

  e
nr

ic
he

d 
lib

ra
ry

 b
as

ed
44

 (
L

i e
t a

l. 
20

01
)

43
4 

(L
or

id
on

 e
t a

l. 
20

05
)

36
0 

(A
nd

ed
en

 e
t a

l. 
20

13
),

 
~7

5 
SS

R
s 

(D
ur

án
 e

t a
l. 

20
04

; 
H

am
w

ie
h 

et
 a

l. 
20

05
, 2

00
9)

73
 (

Z
ei

d 
et

 a
l. 

20
09

)

  G
en

e 
sp

ac
e 

re
ad

 (
G

SR
)/

B
e

S 
an

d 
N

G
S 

ba
se

d
1,

07
1 

(G
up

ta
 a

nd
 G

op
al

ak
ri

sh
na

 2
01

0)
; 7

12
 

(A
nd

ar
gi

e 
et

 a
l. 

20
11

);
 1

, 3
72

 (
X

u 
et

 a
l. 

20
10

, 2
01

1a
, b

)

43
 (

B
ur

st
in

 e
t a

l. 
20

01
)

–
28

,5
03

 (
Y

an
g 

et
 a

l. 
20

12
)

 e
ST

-S
SR

s
41

0 
(X

u 
et

 a
l. 

20
10

)
80

 (
D

e 
C

ai
re

 e
t a

l. 
20

11
);

 2
,3

97
 (

K
au

r 
et

 a
l. 

20
12

)
2,

39
3 

(K
au

r 
et

 a
l. 

20
11

);
 5

,6
73

 
(v

er
m

a 
et

 a
l. 

20
13

)
80

2 
(K

au
r 

et
 a

l. 
20

12
);

 
33

6 
(K

au
r 

et
 a

l. 
20

14
)

 S
N

Ps
1,

53
6 

(L
uc

as
 e

t a
l. 

20
11

; M
uc

he
ro

 e
t a

l. 
20

09
a;

 X
u 

et
 a

l. 
20

11
a,

 b
)

63
 (

A
ub

er
t e

t a
l. 

20
06

a,
 2

00
6b

);
 3

84
 

(D
eu

lv
ot

 e
t a

l. 
20

10
);

 3
6,

18
8 

(L
eo

n-
fo

rt
e 

et
 a

l. 
20

13
);

 3
5,

45
5 

(D
ua

rt
e 

et
 a

l. 
20

14
)

44
,8

79
 (

Sh
ar

pe
 e

t a
l. 

20
13

);
 

1,
09

5 
(T

em
el

 e
t a

l. 
20

14
)

75
 (

C
ot

ta
ge

 e
t a

l. 
20

12
);

 
14

,5
22

 (
K

au
r 

et
 a

l. 
20

14
)

T
ra

ns
cr

ip
to

m
ic

 r
es

ou
rc

es

 e
ST

s 
de

po
si

te
d 

at
 N

C
B

I 
ht

tp
://

w
w

w
.n

cb
i.n

lm
.n

ih
.g

ov
/d

be
ST

/d
be

ST
_

su
m

m
ar

y.
ht

m
l (

db
e

ST
 r

el
ea

se
 1

st
 

Ja
n 

20
13

)

1,
87

,4
87

1,
85

,7
6

9,
51

3
5,

51
0

 T
ra

ns
cr

ip
to

m
e 

as
se

m
bl

ie
s

1 
(M

uc
he

ro
 e

t a
l. 

20
09

a)
3 

(D
ua

rt
e 

et
 a

l. 
20

14
; F

ra
ns

se
n 

et
 a

l. 
20

11
; K

au
r 

et
 a

l. 
20

12
)

3 
(K

au
r 

et
 a

l. 
20

11
; S

ha
rp

e 
et

 a
l. 

20
13

; v
er

m
a 

et
 a

l. 
20

13
)

1 
(K

au
r 

et
 a

l. 
20

12
)

G
en

et
ic

 li
nk

ag
e 

m
ap

s

 P
op

ul
at

io
n 

sp
ec

ifi
c

~2
5 

(L
uc

as
 e

t a
l. 

20
11

; M
uc

he
ro

 e
t a

l. 
20

09
a,

 
b;

 O
ue

dr
ao

go
 e

t a
l. 

20
01

, 2
00

2,
 2

01
2;

 
T

im
ko

 e
t a

l. 
20

07
)

~3
5 

(M
cP

he
e 

20
07

; R
ub

ia
le

s 
et

 a
l. 

20
11

)
~2

0 
(A

nd
ed

en
 e

t a
l. 

20
13

; F
or

d 
et

 a
l. 

20
07

; P
ér

ez
 d

e 
la

 v
eg

a 
et

 a
l. 

20
11

)

~1
0 

(G
ut

ié
rr

ez
 e

t a
l. 

20
13

; 
M

a 
et

 a
l. 

20
13

; T
or

re
s 

et
 a

l. 
20

11
)

http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html


1269Theor Appl Genet (2014) 127:1263–1291 

1 3

cDNA library sequencing using 454 GS-FLX Titanium 
(generating longer reads) and Illumina GA/GAIIx systems 
(comparatively shorter reads) has appeared as a potential 
alternative to leverage the genomic resource repertoire. 
Deep transcriptome sequencing has been performed in pea 
(Duarte et al. 2014; Franssen et al. 2011; Kaur et al. 2012), 
lentil (Sharpe et al. 2013; verma et al. 2013) and faba bean 
(Kaur et al. 2012). As a result of this HTP sequencing, 
massive transcriptomic data were obtained in the form of 
high-quality sequence reads in the selected pulse crops, viz. 
pea (720,324 reads), lentil (847,824 reads) and faba bean 
(304,680), and the transcriptome assemblies consisted of 
70,682, 84,074 and 60,440 unigenes, respectively.

Based on the different approaches chosen for assembly 
of NGS reads, various kinds of transcriptome assemblies, 
viz. de novo, reference based and hybrid are being estab-
lished in these pulse crops (Agarwal et al. 2012; Kudapa 
et al. 2012). The immense potential of NGS was also 
explored for whole-genome transcript profiling in faba 
bean, and NGS in combination with super serial analysis of 
gene expression (SAGe) led to the generation of 1,313,009 
tags shedding new light on the transcriptional changes that 
take place during faba bean–Ascochyta fabae interaction 
(Madrid et al. 2013). Moreover, from functional genom-
ics concerns, faba bean is particularly important as it has 
served as an excellent system for understanding the kinetics 
of stomatal movements in plants (Chen et al. 2004; Dietrich 
et al. 2001; Gao et al. 2005; Hanstein and Felle 2002). In 
addition to transcriptome, low-depth 454 sequencing was 
successfully utilized to uncover the repetitive DNA in the 
pea genome, which enabled a genome-wide characteriza-
tion of the major repeat families and comparison of repeat 
composition with other legume species including soybean 
and Medicago (Macas et al. 2007).

On account of their shorter sequence reads and higher 
error rates (as compared to Sanger sequencing), NGS meth-
ods were initially considered suitable for re-sequencing of 
genotypes where a high-quality reference genome sequence 
was available (Imelfort and edwards 2009; varshney et al. 
2009b). with continuous refinements being made in com-
putational algorithms that are used for assembly and align-
ment, NGS was also applied to de novo whole-genome 
sequencing especially in the crops with moderate-sized 
genomes and even in the absence of physical maps (var-
shney et al. 2011). In contrast to the BAC by BAC method, 
which is very tedious involving construction of BAC librar-
ies, sequencing of BACs, development of a physical map 
and the determination of MTP, the current de novo genome 
assembly using whole-genome shotgun (wGS) approach 
is straightforward, cost-effective and time saving (Imelfort 
and edwards 2009; venter et al. 1996).

In addition to model legume species like Med-
icago truncatula (Young et al. 2011), Lotus japonicus Ta
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(http://www.kazusa.or.jp/lotus/index.html), whole/draft 
genome sequence has become available for soybean 
(Schmutz et al. 2010), pigeonpea (varshney et al. 2011) 
and chickpea (varshney et al. 2013b). More recently, 52 % 
(598 Mb) genome has been assembled for lupin (Yang et al. 
2013). Among pulses selected for discussion here, assem-
bling the gene space in cowpea is underway (Tim Close, 
personal communication). Similarly, efforts have been ini-
tiated to sequence genomes of pea and lentil. In case of 
lentil, a draft (23×) of the genome assembly has recently 
been generated for the reference genotype ‘CDC Redberry’ 
(Ramsay et al. 2014). The complexity and large genome 
size coupled with small research community have not 
allowed undertaking genome sequencing of faba bean.

NGS methods are also being employed for whole-
genome re-sequencing (wGRS) and restriction site-asso-
ciated DNA (RAD) sequencing of germplasm lines for 
exploring genetic diversity and population dynamics (var-
shney et al. 2013b). Like the above-mentioned techniques, 
genotyping by sequencing (GBS) is another NGS-based 
platform that allows simultaneous discovery and mapping 
of several thousands of genetic markers (Davey et al. 2011). 
In lentil, the NGS-GBS approach has facilitated detection 
and mapping of genome-wide SNPs (Temel et al. 2014). 
Advances in sequencing technologies and collaborative 
efforts are expected to deliver draft genome sequences in 
all the pulse crops in the very recent future. It is also antici-
pated that re-sequencing of germplasm collections in these 
pulse crops will provide estimates on genome diversity and 
detailed population structure of germplasm collections.

Trait mapping/gene(s) discovery in pulse crops

Identification of a gene/QTL underlying the trait of inter-
est is the most critical step while proceeding for marker-
assisted selection (MAS)/GAB. Among various genomic 
resources, molecular markers are of direct application in 
crop breeding, as these are heavily deployed in trait map-
ping studies using either family-based linkage (FBL) map-
ping approaches or germplasm-based association mapping 
(AM) (Mackay and Powell 2007). An appropriately built 
experimental population with considerable size lies at the 
core of FBL-based QTL discovery studies (Mitchell-Olds 
2010). Alternatively, non-experimental population or a set 
of genetically diverse genotypes can be used for uncover-
ing the genetic architecture of important traits via linkage 
disequilibrium (LD) analysis or AM (Mackay and Powell 
2007). Trait mapping using linkage or association analy-
sis corresponds to a forward genetics approach, in which 
phenotypic expression is usually known and the phenotypic 
variation is therefore targeted for detecting causal genetic 
polymorphisms. In contrast, a reverse genetics method, 

more precisely a locus-to-phenotype approach, relies on 
determination of the function of a known sequence (McCa-
llum et al. 2000).

Genetic populations: bi-parental and multi-parental 
mapping resources

The family-based populations are usually derived from two 
genotypes showing sufficient phenotypic diversity for few 
traits. Among the different types of populations available, 
the genetic constitution of F2 or backcross (BC) harbours 
considerable heterozygosity, thus limiting opportunities 
for replicated measurements (Collard et al. 2005). By con-
trast, the nearly homozygous nature of recombinant inbred 
(RI) populations enables multi-location and multi-season 
screening of the population, which eventually enhances 
the strength of QTL detection (varshney et al. 2009c). In 
pulses, numerous experimental populations have been 
developed belonging to both narrow (intraspecific)- and 
broad (interspecific)-based crosses, facilitating construction 
of several population-specific genetic maps and molecular 
tagging/mapping of the targeted traits (Table 2; Table 3a, 
b).

Bi-parental mapping populations are endowed with 
greater power for detection of QTLs; however, the map-
ping resolution i.e. precision is not adequate, thus mak-
ing these populations (except NILs) suitable for coarse 
mapping only (Cavanagh et al. 2008). The map resolution 
can be enhanced by (1) incorporating multiple alleles in a 
segregating population and (2) introducing provisions for 
inter-mating in the advanced generations (Korte and Farlow 
2013). In view of the above considerations, a novel meth-
odology known as multi-parent advanced generation inter-
cross (MAGIC) has been introduced in plants (Mackay and 
Powell 2007). The MAGIC scheme is capable of exploiting 
wide genetic variation existing among the multiple found-
ers (Cavanagh et al. 2008). Further, provisions for inter-
mating open up new opportunities for recovery of a large 
number of informative recombinants, which is otherwise 
not feasible in case of traditional bi-parent populations.

Like RI populations, MAGIC lines represent immor-
tal mapping resource suitable for joint linkage associa-
tion analysis (Xu et al. 2012b). Recent achievements of 
MAGIC in Arabidopsis, wheat and rice (see Bandillo et al. 
2013) have placed emphasis towards inclusion of mul-
tiple parents while generating experimental populations 
in pulse crops. Consequently, with support of the CGIAR 
Generation Challenge Programme (GCP), development of 
meta-population derived from eight founders (or MAGIC, 
with 8 parental lines) is underway in cowpea (Ribaut et al. 
2012; https://sites.google.com/site/ijmackay/work/magic). 
Besides fine mapping of QTL(s), the stable MAGIC 
lines have direct or indirect applications in germplasm 

http://www.kazusa.or.jp/lotus/index.html
https://sites.google.com/site/ijmackay/work/magic
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enhancement and cultivar development (Bandillo et al. 
2013). Likewise, another multi-parent based approach, i.e. 
nested association mapping (NAM) also permits both FBL 
and LD analyses (Cook et al. 2012; McMullen et al. 2009; 
Tian et al. 2011). The availability of genome sequence of 
the reference genotype in almost all the major pulse crops 
will help greatly for using the reference genotype as com-
mon parent for developing a series of connected bi-parental 
RI populations that constitutes the NAM design (McMullen 
et al. 2009).

Genetic linkage maps and QTLs

Recent advances in marker systems starting from limited 
morphological markers to abundant sequence-based mark-
ers have taken genetic mapping to the next level where 
the mapping populations can be explored best for superior 
alleles. In the context of genetic mapping, pea is one of the 
pioneer crops in which several morphological markers were 
successfully mapped using classical genetics approaches. 
For instance, the pea mutation map was developed by 
mapping 169 morphological markers (Blixt 1972). Simi-
lar instances were reported in other pulse crops like lentil, 
where the initial genetic maps were based on morphologi-
cal and isozyme markers (Zamir and Ladizinsky 1984).

Highly saturated genetic maps and precisely mapped 
QTLs are the essential tools for undertaking GAB. A quan-
tum leap in the marker systems towards easy-to-use SNP 
markers has led to the development of highly saturated 
genetic maps in the major pulse crops. The core mapping 
populations were used to develop functional or transcript 
maps in these crops such as SNP-based maps developed for 
‘China × Cameor’ and ‘Orb × CDC Striker’ in pea (Deul-
vot et al. 2010; Sindhu et al. 2013), ‘CDC Robin × 964a-
46’ (LR-18) in lentil (Fedoruk et al. 2013; Sharpe et al. 
2013) and ‘Icarus × Ascot’ in faba bean (Kaur et al. 2014). 
These genetic maps provided map locations to a number of 
markers with considerable genome coverage, e.g. 543 loci 
(834.7 cM) in lentil (Sharpe et al. 2013). Further, a detailed 
list of population-specific genetic maps in four selected 
pulse crops is presented in Table 2.

In parallel, the segregation data from diverse mapping 
populations are analysed to synthesize a much broader 
and species-specific genetic map known as ‘consensus’ 
or ‘composite’ map (see Bohra 2013). Moderate- to high-
density consensus maps have been reported in pea (Hamon 
et al. 2011, 2013; Loridon et al. 2005), cowpea (Lucas 
et al. 2011; Muchero et al. 2009a) and faba bean (Román 
et al. 2004; Satovic et al. 1996, 2013; vaz Patto et al. 1999) 
offering higher mapping resolution and better genome 
coverage. Among pulse crops, a comprehensive consen-
sus map was established for cowpea using ~700 individu-
als belonging to six different RILs. The six component or 

population-specific genetic maps had loci ranging from 
288 to 436 with several common SNPs mapped in differ-
ent populations. Subsequently, with the help of bridge 
SNPs, all six component maps were combined into a sin-
gle, high-density and robust consensus map with 645 bins 
encompassing 928 loci and 680 cM (Muchero et al. 2009a). 
This map was further refined by Lucas et al. (2011) with 
1,107 SNPs arranged in 856 bins, thus increasing marker 
density from 0.73 cM (Muchero et al. 2009a) to 0.61 cM 
(http://harvest.ucr.edu). Similarly, notable consensus maps 
were developed for pea and faba bean comprising 619 loci 
(1,513 cM) and 729 loci (4,602 cM), respectively (Hamon 
et al. 2013; Satovic et al. 2013). More recently, Duarte 
et al. (2014) combined data from four different RILs in pea 
and synthesized a highly saturated consensus genetic map 
with 2,070 loci covering 1,255 cM. Moreover, the meta-
QTL analysis using consensus/composite maps enable 
placing of several QTLs from multiple populations onto a 
single genetic map, thus enhancing the QTL resolution and 
additionally incorporating more informative markers into 
the QTL-containing regions (Hamon et al. 2013).

The linkage map-based QTLs controlling several agri-
culturally important traits have been identified in almost 
all the major pulse crops (Table 3). In the absence of a 
genetic linkage map, bulked segregants analysis (BSA) is 
usually performed to find DNA markers tightly associated 
with the concerned trait, mostly resistance to biotic stresses 
(Table 3). BSA using NILs is a powerful mapping strategy 
widely used for understanding marker–trait relationships 
(Gepts et al. 2008). The noteworthy examples of BSA-
based molecular tagging in pulses include various types 
of markers such as random amplification of polymorphic 
DNA (RAPD)/amplified fragment length polymorphism 
(AFLP)/sequence-characterized amplified region (SCAR)/
cleaved amplified polymorphic sequence (CAPS) markers, 
which were employed for screening Ascochyta blight resist-
ance in lentil (Chowdhury et al. 2001), Striga resistance in 
cowpea (Boukar et al. 2004; Ouedraogo et al. 2001), pow-
dery mildew in pea (Pereira et al. 2010) and growth habit 
in faba bean (Avila et al. 2006, 2007) (Table 3a). The GAB 
approaches have been limited till now due to unavailability 
of such relevant DNA markers; however, the above identi-
fied markers linked to agronomically important traits along 
with additional markers for other important traits in com-
ing days from ongoing mapping projects will help to com-
mence GAB in these pulse crops.

Harnessing allelic variation through association genetics

Given segregation of only two alleles, the FBL mapping 
is the most appropriate method for capturing rare alleles; 
however, it lacks precision in locating QTLs within the 
genome (Cavanagh et al. 2008). In contrast to FBL, AM 

http://harvest.ucr.edu
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tests non-random association of alleles or LD in a set of 
diverse and non-related individuals with no extra efforts 
given to the generation of a large experimental population 
(Mackay and Powell 2007). In AM, establishing a marker–
trait association largely depends on the rate of LD decay. 
Although not uniform across the whole genome, LD decays 
at a much higher rate in outbreeding crops compared to 
self-pollinated species (Yu and Buckler 2006). However, 
successful instances of LD analyses in various self-polli-
nated species like barley (Cockram et al. 2010), and subse-
quently in several species like rice and wheat (see Galeano 
et al. 2012), offer new prospects for AM-based discovery of 
important QTL-containing regions in pulses as well.

with increasing availability of large-scale genetic mark-
ers in most of the pulse crops, AM would likely be the 
method of choice for high-resolution QTL discovery. For 
instance, the AM method was applied to diverse collec-
tions from ‘USDA Pea Core’ to examine the associations 
of various candidate genes with yield/yield-relevant traits 
and, consequently, the role of some pea homologues of 
APeTALA2 (AP2) and GA 3-oxidase (GA3ox) with regard 
to yield was revealed (Murray et al. 2009). Kwon et al. 
(2012) also analysed the marker (SSR, RAPD and SCAR) 
and phenotyping data in 285 USDA pea core accessions 
using models such as generalized linear model (GLM) and 
mixed linear model (MLM) and significant marker–trait 
linkages were obtained for mineral nutrient concentrations, 
disease/pest resistance and other important morphological 
traits.

By estimating genome-wide LD decay in asparagus 
bean, Xu et al. (2012a) proposed that LD extends up to a 
long physical distance (~2 cM or 1.86 Mb) in asparagus 
bean. Besides advocating the existing hypothesis about 
unguiculata–sesquipedalis divergence, this investigation 
provided novel insights such as the role of three specific 
chromosomes during cowpea domestication. These three 
LGs (5, 7 and 11) showed markedly different patterns of 
LD decay between the two cultivar groups, viz. unguicu-
lata and sesquipedalis. From the trait mapping perspec-
tive, this study offered a concrete framework for initiat-
ing genome-wide association (GwA)-based dissection of 
complex traits in cowpea. More recently, Muchero et al. 
(2013) performed whole-genome scan in a panel of 383 
diverse cowpea accessions using 865 SNPs. The MLM 
approach identified several QTL regions associated with 
delayed senescence, biomass and yield/yield components. 
Moreover, the report also provided evidences about the 
presence of pleiotropic-effect QTLs for stay-green trait 
in cowpea. Furthermore, QTLs for delayed senescence, 
drought tolerance and yield were validated in another RIL 
population (IT93 K-503-1 × CB46). In a similar way, the 
GwA study involving 171 cowpea accessions confirmed 
the existence of seed weight-QTLs (Css 1-10), which Ta
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Table 3  Trait mapping in selected pulse crops

Trait Name of the population Associated marker(s) Reference

a) BSA-based molecular tagging

 Cowpea

 Cowpea golden mosaic virus IT97 K-499-35 × Canapu T16 AFLP Rodrigues et al. (2012)

 Striga resistance Tvx 3236 × IT82D-849 AFLP Ouedraogo et al. (2001)

Tvu 14676 × IT84S-2246–4 AFLP Ouedraogo et al. (2001)

IT84S-2246 × Tvu14676 SCAR Ouedraogo et al. (2012)

IT93 K-693-2 × IAR1696 AFLP/SCAR Boukar et al. (2004)

Pea

 Development funiculus (def) DGv × PF AFLP/STS von Stackelberg et al. (2003)

 Determinate growth (det) JI2121 × Térèse RAPD Rameau et al. (1998)

 Fascinated stem (fa) JI814 × Térèse RAPD Rameau et al. (1998)

 Increased branching (rms) K524 × Térèse RAPD Rameau et al. (1998)

wL6042 × Térèse RAPD Rameau et al. (1998)

M3T-946 × Torsdag RAPD Rameau et al. (1998)

 Nodulation loci P56 × JI15 P2 × JI281 P54 × JI281 RFLP Schneider et al. (2002)

 Pea seed-borne mosaic virus (PSbMv) 88v1.11 × 425 RFLP Timmerman et al. (1993)

 Photoperiod insensitivity (dne) K218 × Térèse RAPD Rameau et al. (1998)

 Photoperiod insensitivity (sn) HL59 × Térèse RAPD Rameau et al. (1998)

 Powdery mildew Radley × Highlight RAPD/SCAR Tiwari et al. (1998)

Majoret × 955180 SSR ek et al. (2005)

Solara × Frilene-derived mutant SCAR Pereira et al. (2010)

Sparkle × Mexique RAPD/SCAR Tonguç and weeden (2010)

 Fusarium wilt (race 1) resistance Green Arrow × PI 179449 TRAP Kwon et al. (2013)

Lentil

 Ascochyta blight resistance ILL5588 × ILL6002 RAPD Ford et al. (1999)

eston × Indian head RAPD/SCAR Chowdhury et al. (2001)

 Fusarium vascular wilt ILL5588 × L692–16-l (s) RAPD eujayl et al. (1998)

 Radiation frost tolerance (Frt) ILL5588 × L692–16-l (s) RAPD eujayl et al. (1999)

 Anthracnose resistance (LCt-2) eston × PI 320937 AFLP/RAPD Tullu et al. (2003)

Faba bean

 Rust resistance 2N52 × vF-176 RAPD Avila et al. (2003)

 Determinate growth habit verde Bonita × 2N52 CAPS Avila et al. (2006)

 Reduced vicine and convicine content vf 6 × 1268 CAPS Gutiérrez et al. (2006)

 Absence of tannin vf 6 × zt-1 line SCAR Gutiérrez et al. (2007)

vf 6 × zt-2 line SCAR Gutiérrez et al. (2008)

Trait Name of population Marker associated with 
QTL(s)

Pv explained by the 
QTLs (%)*

Reference

b) Linkage map/QTL-based molecular mapping

 Cowpea

  Cowpea bacterial blight 
(CoBB) resistance

DanIla × Tvu7778 SNP 22 Agbicodo et al. (2010)

  Drought-induced senescence IT93K503–1 × CB46 AFLP 24 Muchero et al. (2009b)

  Flower bud thrips resistance Sanzi × vita 7 AFLP 77 Omo-Ikerodah et al. (2008)

  Foliar thrips CB46 × IT93 K-503-1 and 
CB27 × IT82e − 18

SNP 32 Lucas et al. (2012)

  Hastate leaf shape Sanzi × vita 7 SNP 74 Pottorff et al. (2012a)

  Pod fibre layer thickness 524B × 219-01 SSR 17 Andargie et al. (2011)

  Pod length (JP81610 × JP89083) × JP81610 SSR 31 Kongjaimun et al. (2012a)

  Domestication-related traits (JP81610 × JP89083) × JP81610 SSR 53 Kongjaimun et al. (2012b)
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Table 3  continued

Trait Name of population Marker associated with 
QTL(s)

Pv explained by the 
QTLs (%)*

Reference

  Seed weight IT2246-4 × TvNI 963 RFLP 53 Fatokun et al. (1992)

524B × 219-01 SSR 19 Andargie et al. (2011)

  Charcoal rot resistance IT93 K-503-1 × CB46 SNP and AFLP 40 Muchero et al. (2011)

  Flower and seed coat colour ZN016 × Zhijiang 28-2 SNP – Xu et al. (2011b)

  Time of flower opening 524 B × 219-01 SSR 30 Andargie et al. (2013)

  Days to flower 524 B × 219-01 SSR 19 Andargie et al. (2013)

ZN016 × ZJ282 SNP 32 Xu et al. (2013)

  Nodes to first flower ZN016 × ZJ282 SNP 22 Xu et al. (2013)

  Pod number per plant ZN016 × ZJ282 SSR 20 Xu et al. (2013)

  Leaf senescence ZN016 × ZJ282 SNP 29 Xu et al. (2013)

  Floral scent compounds 524 B × 219-01 SSR 60 Andargie et al. (2014)

  Heat tolerance CB27 × IT82e − 18 SNP 18 Lucas et al. (2013a)

  Seed size eight different populations SNP 47 Lucas et al. (2013b)

  Fusarium wilt resistance (Fot 
race 3)

CB27 × 24-125B-1 SNP 28 Pottorff et al. (2012b)

  Fusarium wilt resistance (Fot 
race 4)

IT93 K-503-1 9 CB46 SNP 47 Pottorff et al. (2014)

CB27 × 24-125B-1 SNP 40 Pottorff et al. (2014)

CB27 × IT82e − 18 SNP 27 Pottorff et al. (2014)

  Pod tenderness (JP81610 × JP89083) × JP81610 SSR 50 Kongjaimun et al. (2013)

JP81610 × JP89083 SSR 43 Kongjaimun et al. (2013)

 Pea

  Aphanomyces root rot Puget × 90-2079 AFLP 47 Pilet-Nayel et al. (2002)

Baccara × PI 180693 – 49 Hamon et al. (2011)

Baccara × 552 – 21 Hamon et al. (2011)

DSP × 90-2131 – 60 Hamon et al. (2013)

  Ascochyta blight resistance A88 × Rovar – 35 Timmerman-vaughan et al. 
(2002)

DP × JI296 – 74 Prioul et al. (2004)

P665 × Messire. P665 – 75 Fondevilla et al. (2008)

  Days to maturity Carneval × MP1401 – 34 Tar’an et al. (2004)

  Frost resistance Champagne × Terese – 45 Dumont et al. (2009)

  Grain yield Carneval × MP1401 – 38 Tar’an et al. (2004)

  Lodging resistance Carneval × MP1401 AFLP/SCAR 58 Tar’an et al. (2003b, 2004)

  Mycosphaerella blight resist-
ance

Carneval × MP1401 – 36 Tar’an et al. (2003b, 2004)

  Plant height erygel × 661 RFLP 19 Dirlewanger et al. (1994)

Carneval × MP1401 – 65 Tar’an et al. (2003b, 2004)

  Plant maturity A26 × Rovar – 27 Timmerman-vaughan et al. 
(2004)

  Seed protein concentration Carneval × MP1401 – 45 Tar’an et al. (2004)

  Seed weight Primo × OSU442-15 RAPD 62 Timmerman-vaughan et al. 
(1996)

  Yield component and devel-
opmental traits

Primo × OSU442-15 – 62 Timmerman-vaughan et al. 
(2005)

  Yield-related traits and seed 
protein content

wt10245 × wt11238 – 56 Irzykowska and wolko 
(2004)

  Pea weevil Pennant × ATC113 SSR 43 Aryamanesh et al. (2014)

  Fusarium wilt (race 2) resist-
ance

Shawnee × Bohatyr SSR 80 McPhee et al. (2012)
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Table 3  continued

Trait Name of population Marker associated with 
QTL(s)

Pv explained by the 
QTLs (%)*

Reference

  Salt tolerance Kaspa × Parafield SNP 19 Leonforte et al. (2013)

 Lentil

  Ascochyta blight resistance ILL 7537 × ILL 6002 AFLP 47 Rubeena et al. (2003)

eston × PI320937 AFLP and RAPD 50 Tullu et al. (2006)

Digger (ILL5722) × Northweld 
(ILL5588)

ITAP, SSR and ISSR 61 Gupta et al. (2012b)

ILL5588 × ILL7537 and 
ILL7537 × ILL6002

– 50 Rubeena et al. (2006)

  earliness eston × PI320937 RAPD and AFLP 46 Tullu et al. (2008)

  Plant height eston × PI320937 AFLP and SSR 40 Tullu et al. (2008)

Lupa × Boiss – 38 Fratini et al. (2007)

  Stemphylium blight resistance ILL-6002 × ILL-5888 SRAP and RAPD 46 Saha et al. (2010)

  winter hardiness wA8649090 × Precoz ISSR 43 Kahraman et al. (2010)

  Seed thickness CDC Robin × 964a-46 Morphological marker 
(cotyledon colour locus 
(Yc))

38 Fedoruk et al. (2013)

  Seed plumpness CDC Robin × 964a-46 Cotyledon colour locus 
(Yc)

40 Fedoruk et al. (2013)

  Days to 50 % flowering CDC Robin × 964a-46 Cotyledon colour locus 
(Yc)

35 Fedoruk et al. (2013)

ILL 6002 × ILL 5888 SSR/RAPD/SRAP 20 Saha et al. (2013)

  Seed diameter Lupa × Boiss – 37 Fratini et al. (2007)

ILL 6002 × ILL 5888 SSR/RAPD/SRAP 32 Saha et al. (2013)

  Seed weight Lupa × Boiss – 18 Fratini et al. (2007)

ILL 6002 × ILL 5888 SSR/RAPD/SRAP 18 Saha et al. (2013)

  Boron tolerance Cassab × ILL2024 SNP 71 Kaur et al. (2013)

 Faba bean

  Ascochyta blight resistance 29 H × vf 136 RAPD 45 Avila et al. (2004)

vf 6 × vf 136 RAPD 25 Román et al. (2003)

vf 6 × vf 136 RAPD 24 Díaz-Ruiz et al. (2009a)

Icarus × Ascot SNP 20 Kaur et al. (2014)

  Broomrape resistance vf 6 × vf 136 RAPD 35 Román et al. (2002)

vf 6 × vf 136 RAPD 43 Díaz-Ruiz et al. (2009b)

29 H × vf 136 RAPD 33 Gutiérrez et al. (2013)

  Floral characters 29 H × vf 136 RAPD 20 Avila et al. (2005)

  Days to flowering vf 6 × vf 27 SSR 28 Cruz-Izquierdo et al. 
(2012)

  Flowering length vf 6 × vf 27 eST-derived marker 31 Cruz-Izquierdo et al. 
(2012)

  Pod length vf 6 × vf 27 SSR 25 Cruz-Izquierdo et al. 
(2012)

  Number of ovules per pod vf 6 × vf 27 eST-derived marker 27 Cruz-Izquierdo et al. 
(2012)

  Number of seeds per pod vf 6 × vf 27 RAPD 26 Cruz-Izquierdo et al. 
(2012)

  Seed weight – RAPD 30 vaz Patto et al. (1999)

  Yield characters 29 H × vf 136 RAPD 58 Avila et al. (2005)

  Frost tolerance Coted’Or 1 × BPL 4628 RAPD 40 Arbaoui et al. (2008)

  Fatty acid content Coted’Or 1 × BPL 4628 RAPD 63 Arbaoui et al. (2008)

* QTLs with the highest phenotypic variation (Pv) are shown and only major effect QTLs with Pv ≥ 10 % are considered
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were initially detected in eight different RI populations by 
family-based QTL analysis. Further, most of the underly-
ing QTLs exhibited syntenic relationship with genomic 
regions controlling seed weight in soybean. Notably, one 
of the candidate QTLs (Css-3) colocalized with another 
QTL known to impart resistance to foliar thrips (Thr-1) in 
cowpea, whereas two other QTLs (Css-4 and Css-9) over-
lapped with loci governing charcoal rot resistance (Mac-6 
and Mac-8) (Lucas et al. 2013b). The AM approach was 
also used in lentil for detection of significant QTLs associ-
ated with various seed-relevant traits. A set of 140 acces-
sions comprising various breeding lines, cultivars and 
landraces was genotyped with ~900 GG-based SNPs and 
subsequently, QTLs were recovered for seed diameter, seed 
thickness and seed plumpness (Fedoruk 2013).

The confounding effects of population structure or 
genetic relatedness, however, remain the biggest impedi-
ment to AM that often lead to the generation of various 
spurious associations or false positives (Korte and Farlow 
2013; Mitchell-Olds 2010; varshney et al. 2012). This 
limitation may be overcome through employing GwAS 
in MAGIC or NAM populations, which are intrinsically 
devoid of any complex structure (Bandillo et al. 2013; 
Cook et al. 2012; McMullen et al. 2009; Tian et al. 2011). 
In this way, multi-parent genetic populations bridge the 
gaps between FBL and LD-based approaches and hold 
great potential for high-resolution trait mapping.

Reverse genetics approaches for gene discovery

Reverse genetics comprises an array of approaches like 
transgenic-based as well as non-transgenic systems like 
virus-induced gene silencing (vIGS) and targeting-induced 
local lesion in genomes (TILLING). To establish a trans-
genic system the prerequisites are: (1) an efficient and reli-
able genetic transformation procedure, (2) a reproducible, 
economically viable and easy-to-use regeneration protocol 
and (3) an appropriate selectable marker with correspond-
ing selective agent to recover transformants (Popelka et al. 
2004; Svabova and Griga 2008). To introduce foreign DNA 
into plant cells, two techniques, viz. Agrobacterium-medi-
ated and direct DNA transfer including electroporation, 
mircoprojectile bombardment and polyethylene glycol 
(PeG), have been used in these pulse crops (eapen 2008; 
Popelka et al. 2004; Somers et al. 2003). Of all the tech-
niques used for DNA delivery, Agrobacterium tumefaciens-
mediated transfer has been widely accepted as the standard 
method in legumes (Atif et al. 2013; eapen 2008; Som-
ers et al. 2003). Conversely, alternative methods involv-
ing direct DNA transfer are known to generate relatively 
elevated number of chimeras (Chandra and Pental 2003; 
Popelka et al. 2004). Nevertheless, direct DNA transfer 

represents the sole method for introducing a foreign gene 
into organellar genomes (Atif et al. 2013).

In general, the frequency of transformation in pulse 
crops is considerably low as compared to cereals (Atif et al. 
2013; Chandra and Pental 2003; eapen 2008). For exam-
ple, some recent genetic transformation experiments have 
reported frequencies of 3.09–3.6 % in cowpea (Bakshi et al. 
2011, 2012), 0.1–1.0 % in pea (Svabova and Griga 2008), 
0.9 % in lentil (Chopra et al. 2011) and 0.15–2 % in faba 
bean (Hanafy et al. 2005). Given the context, Svabova and 
Griga (2008) considered co-cultivation as a decisive step 
towards enhancing the transformation efficiency and evalu-
ated the effects of application of various chemicals such as 
acetosyringone, l-cysteine, dithiothreitol, glutathione, cel-
lulase and pectinase while performing co-cultivation in pea. 
Previously, Olhoft and Somers (2001) reported a fivefold 
increase in stable DNA integration by applying l-cysteine 
to the solid co-cultivation medium in soybean. Besides use 
of chemical additives, sonication and vacuum infiltration-
assisted methods have also been reported to improve the 
efficiency of genetic transformation in these crops (Bakshi 
et al. 2011; Chopra et al. 2011).

Furthermore, concerning the mode of regeneration in 
pulse crops, direct organogenesis (without callus forma-
tion) has been preferred over somatic embryogenesis (Atif 
et al. 2013; Chandra and Pental 2003). However, recalci-
trance and genotype-specific response of various pulse 
crops to these regeneration protocols are other major issues 
challenging their routine use in transgenic development. To 
overcome the issue of recalcitrance to regeneration in vitro, 
Somers et al. (2003) suggested exploring the possibilities 
of non-tissue culture-based transformation, which avoids 
labour-intensive culture practices and eventually elimi-
nates other related problems including somaclonal varia-
tions (Griga et al. 1995) and differential response of gen-
otypes to regenerate (Tague and Mantis 2006). Recently, 
weeks et al. (2008) developed a genotype-independent 
and marker-free in planta transformation system for alfalfa 
(Medicago sativa) with enhanced transformation efficiency 
(~7 %). Though constant refinements are being made in 
the transformation systems and regeneration protocols, 
stable transmission of a foreign gene to subsequent prog-
enies and its predictable expression still remains challeng-
ing (Gelvin 2003; Popelka et al. 2004). Nevertheless, the 
transgenic-based RNA interference (RNAi) technologies 
have greatly helped in understanding the molecular mecha-
nisms of nitrogen fixation in legumes. For instance, the role 
of Rba 2 gene in Phaseolus–Rhizobium symbiotic relation-
ship was elucidated using RNAi technology with no induc-
tion observed for early nodulation genes (Antonio Blanco 
et al. 2009). In addition to exploring symbiotic nitrogen 
fixation, RNAi was also used to examine the mechanism of 
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resistance against various biotic constraints in pulses (Bon-
fim et al. 2007).

The non-transgenic approaches are particularly suitable 
for legumes, which are not amenable to routine transfor-
mation/regeneration protocols (Tadege et al. 2009). One 
of such powerful and HTP techniques is TILLING, which 
involves chemical mutagenesis, and a sensitive mutation-
detecting instrument, therefore making it amenable to 
automation. The basic steps followed in TILLING are: 
(1) generation of a TILLING population, (2) isolation 
and pooling of DNAs, (3) PCR amplification with gene-
specific labelled primers, (4) denaturation and re-anneal-
ing followed by hetero-duplex formation, (5) cleavage at 
mismatch using enzymes like CEL1 endonuclease and 
(6) detection of cleaved products using instruments such 
as LI-COR (Gilchrist and Haughn 2005; McCallum et al. 
2000; Tadege et al. 2009). In pea, a global TILLING plat-
form has been developed with two eMS-induced mutant 
populations from two genotypes: ‘Cameor’ (4,704 M2 
lines) and ‘Terese’ (3,072 M2 lines). The ‘Cameor’ popula-
tion, also referred to as ‘reference TILLING population’, 
successfully allowed molecular screening of 54 genes 
(http://www-urgv.versailles.inra.fr/tilling/pea.htm; Dalmais 
et al. 2008) with the notable mutation detection in the pea 
methyl transferase 1 gene (PsMet1). Further, the efficacy 
of Arabidopsis thaliana mismatch-specific endonucleases 
(ENDO1) to detect mutation in gibberellin 3 beta-hydro-
lase gene of P. sativum was successfully demonstrated in 
the ‘Terese’ population (Triques et al. 2007). Moreover, 
an in silico database ‘UTILLdb’ has been set up to enable 
access to the phenotypic expression and sequence informa-
tion on mutants (Dalmais et al. 2008). TILLING has also 
contributed to understanding the function of pea subtilase 
(SBT1.1) and tendril-less (tl) genes in controlling seed size 
and tendril formation, respectively (D’erfurth et al. 2012; 
Hofer et al. 2009).

Apart from RNAi and TILLING, vIGS is another 
reverse genetics technique for discovery and characteri-
zation of the causative gene(s). Grønlund et al. (2010) 
successfully applied vIGS technique in pea to suppress 
genes that are involved in nitrogen-fixing Rhizobium as 
well as in developmental processes. Similarly, the role of 
CHLI and CHLD genes in tetrapyrrole biosynthesis and 
chloroplast development was examined in pea using the 
vIGS approach (Luo et al. 2013). Despite some nota-
ble achievements of reverse genetics approaches, these 
methods are not so popular as these are time consuming, 
very costly and can only be exercised in selected institu-
tions/organizations. Nevertheless, further advancements 
in technology may provide better implementation of 
such research experimentations with generation of sub-
stantially useful information for further improvement of 
pulse crops. Ta
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Developing Web tools for community‑oriented research

with a deluge of omics information being generated world-
wide, easy access to data remains one of the foremost 
challenges to large-scale integration of omics informa-
tion into crop improvement (Main et al. 2013). The com-
munity-based approach has facilitated the development of 
several web interfaces for various pulse crops, allowing 
storage and ensuing retrieval of data in a very systematic 
and user-friendly manner (Table 4). These databases offer 
a comprehensive view of the available genetic resources 
like mutant stocks/germplasm collections, genomic tools 
including BACs, BeSs, markers, maps, QTLs and tran-
scriptomic resources such as cDNA libraries and eSTs. 
Moreover, these web tools integrate several other data-
bases/browsers enabling comprehensive computational 
analyses for comparative genomics studies. For example, 
a popular legume web resource namely Legume Informa-
tion System (LIS) was developed by the National Center 
for Genome Resources (NCGR) and the United States 
Department of Agriculture (USDA), which incorporates 
several other databases and web interfaces including Soy-
Base, CMap and comparative functional genomics browser 
(CFGB) (Gonzales et al. 2005). In the interest of the pulse 
research community, it is very essential to keep these web-
sites updated with newer useful information.

GAB in pulse crops: advancing from MAS to GS

The establishment of marker–trait associations in these 
crops has opened new avenues for applying knowledge-
based breeding, which focuses on crossing of genotypes and 
selection of appropriate offspring on the basis of QTL(s)/
marker(s) rather than relying entirely on phenotypic expres-
sion. Outstanding success stories on the deployment of the 
marker(s)/QTL(s) in routine breeding programme are avail-
able in several crops including rice, maize, wheat, pearl mil-
let and mustard (Gupta et al. 2012a). In case of pulses, a rel-
atively poor genomic infrastructure has prevailed for a long 
time, which has hampered the initial investments in GAB; 
however, recent developments in pulses genomics have led 
to initiation of several MAS projects.

It was the classic work by Karl Sax in common bean, 
which laid the foundation of modern theory of association 
between genetic markers and quantitative traits. He exam-
ined linkages of size differences with seed coat pattern 
and pigmentation (Sax 1923). Thenceforth, DNA markers 
have greatly contributed making MAS an integral com-
ponent of pulse breeding. The utility of SCAR markers 
(MahSe2 and C42B) in discriminating Striga resistant and 
susceptible lines was successfully demonstrated in cowpea 
(Omoigui et al. 2012). In lentil, selection based on markers 

UBC 2271290 (RAPD)/RB18680 (SCAR) and OPO61250 
(RAPD) associated with Ascochyta blight and Anthracnose 
resistance, respectively, allowed identification of geno-
types carrying resistance genes to both Ascochyta blight 
and Anthracnose (Tar’an et al. 2003a). Similarly, a robust 
CAPS marker was used for MAS in faba bean and exhib-
ited 100 % accuracy in distinguishing determinate and 
indeterminate genotypes in the F2 population (verde Bon-
ita’ ×2N52) (Avila et al. 2006). Likewise, indirect selec-
tions using SCAR markers (linked with the genes: zt-1 and 
zt-2) were successful (accuracy up to 95 %) in discriminat-
ing high tannin-containing genotypes from genotypes with 
zero tannin content (Torres et al. 2010). The CAPS markers 
associated with low vicine and convicine content are also 
good candidates for practising MAS against these major 
anti-nutritional factors (Gutiérrez et al. 2006).

Marker-assisted back crossing (MABC) is the simplest 
way to introgress QTLs, particularly a finite number of 
QTL(s)/gene(s) experiencing strong and durable effects 
on the phenotype (varshney et al. 2012; Xu et al. 2012b). 
Alternatively to capture multiple QTLs with smaller effects, 
the idea of marker-assisted recurrent selection (MARS) 
was propounded (Ribaut et al. 2010). Given the demerits 
of phenotypic recurrent selection (RS) like imprecise selec-
tion and lengthy breeding cycles, the MARS scheme offers 
a marker-aided refinement over RS in which selection 
and inter-mating are based on marker scores (Ribaut and 
Ragot 2007; Ribaut et al. 2010). Unlike MABC, MARS 
can be initiated without any prior knowledge of QTLs with 
the objective of discovering and harnessing the superior 
QTLs/alleles during the MARS scheme itself (Bernardo 
and Charcosset 2006). empirical and simulation results 
obtained in maize, soybean and sunflower have encouraged 
the research community to extend MARS scheme to these 
pulse crops. For example, MARS programmes have been 
recently initiated in cowpea involving several populations, 
each derived from two elite parents (Huynh et al. 2014).

Sometimes, introgressed QTLs may not be able to repro-
duce the expected phenotype due to fresh genetic interac-
tions that are established with the new genetic background 
(Grandillo and Tanksley 2005). Given the above-mentioned 
repercussion of QTL–background interactions, the advanced 
backcross QTL (AB-QTL) scheme was proposed that could 
facilitate detection as well as transfer of QTLs within the 
same mapping population. AB-QTL generates new pros-
pects to explore the underutilized genetic variation contained 
in the CwRs (Tanksley and Nelson 1996). Though widely 
accepted in cereals like wheat, rice, barley and maize (Gran-
dillo and Tanksley 2005), AB-QTL has not shown signifi-
cant impacts in pulse crops. Among the various pulse crops, 
AB-QTL populations have been developed only in few crops 
like common bean and pigeonpea (Blair et al. 2006; varsh-
ney et al. 2013a). In particular, the CwR-derived populations 



1282 Theor Appl Genet (2014) 127:1263–1291

1 3

have great scope in improving crops that have suffered from 
severe domestication bottlenecks and extremely narrow 
genetic base in the primary gene pool. Owing to immense 
variability for domestication forms, pea is considered an 
excellent system to understand the genetic basis of changes 
that occurred during the process of domestication. A set of 
five broad-based genetic populations was established in pea 
using a wild ancestor (P. sativum ssp. elatius) and primitive 
landrace (P. sativum ssp. abyssinicum), and the investigation 
revealed important genes/QTLs for domestication-related 
traits that collectively represent a ‘domestication syndrome’ 
(weeden 2007). The pulse crops have fairly less genetic 
diversity in the cultivated pool and, hence, development of 
such broad-based genetic populations is a highly desirable 
strategy to expand the genetic base.

In recent years, noteworthy changes were experienced 
in the throughput and accuracy of several genotyping plat-
forms and NGS systems (Xu et al. 2012b). In parallel, a 
continued search for more efficient and high-throughput 
molecular breeding methods has resulted in the introduc-
tion of a novel approach for genetic improvement, in which 
selections are made on the basis of genomic estimated 
breeding values (GeBvs) (Meuwissen 2007). The GeBvs 

are calculated using genome-wide DNA marker informa-
tion and choosing worthy individuals based on GeBv is 
referred to as genomic selection (GS) (Heffner et al. 2009; 
Meuwissen et al. 2001). In GS, high-density genotyping 
and phenome-level phenotyping are performed for training 
population. On the other hand, the candidate population 
(another component of GS) is used for genotyping only and 
eventually for selecting the superior individuals (Nakaya 
and Isobe 2012). As evident from the above description, 
no additional phenotyping is required for the candidate 
population. Hence, GS efficiently exploits the high-density 
marker data available at a reasonable cost, and at the same 
time it dramatically reduces the experimental cost by cir-
cumventing the need for repeated phenotyping (Heffner 
et al. 2009; Xu et al. 2012b). Keeping the recent genomics 
advances in view, a holistic approach for improvement of 
pulse crops has been illustrated in Fig. 2.

Summary and perspectives

To realize the enormous potential of genomic tools and 
technologies, it is essential that these tools should become 

Fig. 2  Integrative genom-
ics and breeding approach for 
accelerated genetic improve-
ment in pulse crops. The figure 
depicts that methodological 
shifts in marker discovery/
genotyping and QTL map-
ping strategies have enhanced 
the throughput and resolution, 
respectively. Different kinds of 
mapping populations/associa-
tion panels are used to establish 
the gene–trait associations. 
Concerning introgression of 
QTLs, MABC aims at transfer-
ring limited number of QTLs, 
while MARS enables accumula-
tion of several QTLs. GS relies 
entirely on GeBv estimates 
and these estimates can be 
employed directly in breeding 
population for selection of supe-
rior genotypes. while practising 
GAB, the magnitude of genetic 
gain increases in the following 
order: MABC < MARS < GS
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an integral part of regular pulse breeding programmes so 
that all the accumulated resources and genomic knowledge 
could be translated into improved cultivars. The wide appli-
cability of MAS has already been demonstrated in cowpea 
and pea, while in the case of lentil and faba bean it is in 
infancy stage. However, one encouraging fact is that excep-
tional progress has already been made in generating ample 
genomic resources in all the major pulse crops. To this end, 
the availability of reference genome sequences opens an 
exciting future for genomic-assisted pulse improvement. 
Though the prices of HTP genotyping and sequencing have 
come down to an affordable level, phenotyping of complex 
traits remains cumbersome, cost prohibitive and environ-
mentally sensitive. Therefore, there is a compelling need to 
deploy modern molecular breeding methods such as MARS 
and GS that are able to reap maximum benefits from 
declining genotyping prices, while demanding the least 
(one-time) phenotyping. In addition, the recently developed 
NGS-based methods like wGRS/GBS/RADseq would effi-
ciently extract valuable information from complex map-
ping resources such as MAGIC or NAM. Besides high-
resolution QTL mapping, nearly homozygous MAGIC 
lines have direct implications in variety development (see 
Bandillo et al. 2013). These advanced molecular breeding 
approaches thus represent the next generation of MAS that 
would greatly assist breeders to strengthen as well as reori-
ent the pulse breeding programmes.
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