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Abstract

Root damage caused by aluminum (Al) toxicity is a major cause of grain yield reduction on acid soils, which are prevalent in
tropical and subtropical regions of the world where food security is most tenuous. In sorghum, Al tolerance is conferred by
SbMATE, an Al-activated root citrate efflux transporter that underlies the major Al tolerance locus, AltSB, on sorghum
chromosome 3. We used association mapping to gain insights into the origin and evolution of Al tolerance in sorghum and
to detect functional variants amenable to allele mining applications. Linkage disequilibrium across the AltSB locus decreased
much faster than in previous reports in sorghum, and reached basal levels at approximately 1000 bp. Accordingly, intra-
locus recombination events were found to be extensive. SNPs and indels highly associated with Al tolerance showed a
narrow frequency range, between 0.06 and 0.1, suggesting a rather recent origin of Al tolerance mutations within AltSB. A
haplotype network analysis suggested a single geographic and racial origin of causative mutations in primordial guinea
domesticates in West Africa. Al tolerance assessment in accessions harboring recombinant haplotypes suggests that
causative polymorphisms are localized to a ,6 kb region including intronic polymorphisms and a transposon (MITE)
insertion, whose size variation has been shown to be positively correlated with Al tolerance. The SNP with the strongest
association signal, located in the second SbMATE intron, recovers 9 of the 14 highly Al tolerant accessions and 80% of all the
Al tolerant and intermediately tolerant accessions in the association panel. Our results also demonstrate the pivotal
importance of knowledge on the origin and evolution of Al tolerance mutations in molecular breeding applications. Allele
mining strategies based on associated loci are expected to lead to the efficient identification, in diverse sorghum
germplasm, of Al tolerant accessions able maintain grain yields under Al toxicity.
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Introduction

Among the various abiotic stresses that limit sorghum produc-

tion, aluminum (Al) toxicity has been identified as one of the main

breeding targets on acid soils [1], which are commonly found in

tropical and subtropical regions where sorghum is intensively

cultivated. As the primary result of Al toxicity is a damaged and

stunted root system, water and nutrient acquisition are thereby

compromised, leading to significant yield losses [2].

Because acid soils are widespread in the world [3], Al toxicity

represents a major constraint for crop production worldwide,

particularly in areas where food security still poses a significant

challenge to human populations. For example, Al toxicity and

phosphorus deficiency are major constraints for sorghum produc-

tion in West Africa [4,5]. In addition, yield reduction caused by

drought stress, which is common in the region, worsens as roots

intoxicated by Al are incapable of penetrating the deep, highly

acidic soil layers to acquire water [6]. A potential threat to food

security arises as sorghum and pearl millet are the main staple food

crops in the West African Savannah zones [7]. In view of today’s

challenge of feeding nine billion people in the near future,

including the most economically disadvantaged [8], modern

molecular strategies are needed [9].

Organic acids such as malate and citrate are released by Al-

activated organic acid transporters located in the plasma

membrane of cells in the root apex. Once in the rhizosphere,

they form stable complexes with Al, thereby conferring Al

tolerance [10]. Major Al tolerance genes belonging to the

aluminum-activated malate transporter (ALMT) and multidrug

and toxic compound efflux (MATE) families were first cloned in

wheat (TaALMT1, [11]), sorghum (SbMATE, [12]) and barley

(HvAACT1, [13]), and subsequently have been found to control Al

tolerance in a number of other plant species (reviewed in [14]).

In sorghum, the major Al tolerance locus, AltSB, was mapped to

the end of sorghum chromosome 3 and explains 80% of the

phenotypic variation in a mapping population derived from the
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Al-tolerant line, SC283, and the Al-sensitive line, BR007 [15]. An

allelic series at the AltSB locus was found to underlie highly

contrasting phenotypes in sorghum. Evidence in support of other

distinct Al tolerance genes was also found [16]. Subsequently, high

resolution mapping localized AltSB to a 24.6 kb region within

which SbMATE (GenBank accession EF611342), a gene encoding

an aluminum-activated citrate transporter belonging to the MATE

family, was found to underlie the Al tolerance locus [12]. SbMATE

is expressed in the roots of a tolerant near-isogenic line (NIL) in an

aluminum-inducible fashion, with highest expression localized to

the first centimeter of the root. The SbMATE coding region was

completely monomorphic between the parental alleles. In

conjunction with a significant positive correlation between Al

tolerance and both citrate exudation and SbMATE expression, this

suggests that polymorphisms in regulatory regions underlie the

allelic effects at the AltSB locus by modulating SbMATE expression.

Polymorphisms in the AltSB region included a variable Tourist-like

miniature inverted repeat transposable element (MITE) insertion

in the promoter region and SNPs and indels located in the second

SbMATE intron and within two amplicons in the SbMATE 39

region [12]. The size of the MITE insertion across different

sorghum lines is positively correlated with Al tolerance, suggesting

that this insertion harbors cis-acting elements that enhance

SbMATE expression in Al tolerant genotypes. Cis-acting elements

altering Al tolerance gene expression have been reported for

TaALMT1 in wheat [17], HvAACT1 in barley [18] and for the

TaMATE1B gene in wheat [19].

There is growing evidence that regulatory factors modulate the

expression of Al tolerance genes. For example, in Arabidopsis,

expression of both AtALMT1 and AtMATE has been shown to be

regulated by a C2H2-type zinc finger transcription factor, STOP1,

which is also associated with tolerance to low pH [20,21]. A

homolog of STOP1, ART1, regulates the expression of a suite of

genes related to Al tolerance in rice, including STAR1 and STAR2

[22], Nrat1 [23], OsALS1 (an ABC transporter involved in rice Al

tolerance, [24]) and the MATE family member, OsFRDL4 [25].

Using different donors, AltSB was introgressed into a genetic

background belonging to an Al sensitive line [26]. A varying

reduction in both Al tolerance and SbMATE expression from

parents to the derived NILs was observed and the NILs differed

for SbMATE expression, suggesting that SbMATE expression is

regulated at multiple levels. That is, these findings suggest that

although cis effects are dominant in controlling SbMATE

expression, the loss of functional trans-acting factors may lead to

potentially strong genetic background effects depending on the

donor allele, reducing both SbMATE expression and Al tolerance.

Population structure, which is common in sorghum [27,28,29],

must be controlled in order to avoid false positives in association

genetics research. We have previously reported that Al tolerance is

a rare trait in sorghum and is not randomly distributed across the

species diversity continuum [30]. That is, Caniato and colleagues

found that 80% of the sorghum accessions were Al sensitive, 14%

were identified as intermediately tolerant and only 6% were highly

Al tolerant. Excluding breeding derivatives, only 5% of the entire

panel was found to be highly tolerant to Al. Al tolerance is more

prevalent in guinea and to lesser extent caudatum subpopulations,

suggesting that causal mutations might have arisen in West Africa,

after the guinea race differentiated from the primordial bicolor

types.

In the present study, the panel described in [30] was used for

association mapping, focusing on the 24.6 kb region where the

AltSB locus is located on sorghum chromosome 3. We observed a

fast rate of LD decay in the region. Intra-locus recombination

events were found to explain much of the haplotypic diversity

observed for AltSB and were instrumental in narrowing down the

location of causal variants, which are likely located in a 6 kb

region encompassing the MITE insertion and intronic polymor-

phisms. A haplotype network based on polymorphisms associated

with Al tolerance suggests a single, recent origin of Al tolerance

conferred by AltSB in guinea sorghums from West Africa. The

implication of these findings as a basis for allele mining strategies

to identify Al tolerant accessions is discussed.

Results

Linkage Disequilibrium in the AltSB Region
The LD decay model based on drift-recombination equilibrium

explained approximately 76% of the variance in r2 estimates.

Figure 1 shows there is a steep decrease in r2 estimates, which

dropped to ,0.2 and then close to zero for sites separated by

,1 kb and ,5 kb, respectively. An analysis of mean r2 estimates

and the respective standard deviations supports rapid LD decay in

the AltSB region (Table 1). Although LD decay was less

pronounced based on D’, which is not sensitive to differences in

allele frequencies [31], it was also significant using this statistic

(regression coefficient, b1 = 0.000028, p,0.0001). Based on D’,

85% of sites 1 kb apart but only 38% of sites more than 5 kb apart

were in significant LD (p,0.05).

Association Model Fitting and Type I Error Control
For each tested model, the probability distribution under the

null hypothesis was obtained by plotting the p-values resulting

from association analysis against the cumulative p-values (Figure 2).

A non-uniform distribution was found for the naı̈ve, Q6 (six

subpopulations) and K models in the cumulative plots, resulting in

inflated type I error. Using a variety of approaches we have

previously determined that six subpopulations result in a

meaningful representation of the genetic diversity patterns in this

sorghum association panel [30]. Nonetheless, here we also tested

4, 6, 8 and 12 subpopulations for type I error control. In

agreement with our expectations, while the performance of the Q4

model in error control was reduced relative to Q6, no advantage

was observed with higher subpopulation numbers (data not

shown). Therefore, the most effective control of false positives

was achieved with a mixed model that included six subpopulations

combined with familial relatedness (Q6+K), which resulted in the

fewest false positive associations among all tested models.

Association Analysis Revealed Polymorphisms Associated
with Al Tolerance

Broad-sense heritability estimates for Al tolerance based on

RNRG data exceeded 0.9. Using p,0.01 as a threshold, 14 of the

21 polymorphisms identified within the AltSB region were found to

be significantly associated with Al tolerance as represented by

RNRG5d (Figure 3a), with five associated loci located within the

second intron of SbMATE. As expected, associated loci were in

general in LD (Figure 3b), preventing the unambiguous identifi-

cation of causative polymorphism(s). The SNP locus with the

strongest association was 6083 (2log10(p) > 15) within the second

SbMATE intron, explaining approximately 12% of the Al

tolerance variation, with an allele substitution effect on Al

inhibition of root growth (RNRG5d) of ,54% (Figure 3c, Tables

S1 and S2). At this locus, the allele associated with Al tolerance, A,

was the least frequent allele (minor allele frequency, MAF = 0.10,

Table S3 and S4). Loci with 8, 2log10(p) ,12 were 199, the

MITE locus (MIV) in the promoter region, with a ,43% effect on

RNRG5d, marker 6094 in the second SbMATE intron and 8364,

8423 and 12487 downstream of SbMATE, which each increased

Genetic Dissection of Sorghum Aluminum Tolerance
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RNRG5d by ,60% (Table S2). Loci located on the edges of the

AltSB region up to the ,12 kb position, such as 161, 199 and

12487, were still in significant LD with the loci located within or

close to SbMATE and thus are still associated with Al tolerance.

Associations became significantly weaker (2log10(p) > 2) for

polymorphisms located at physical positions relatively distant from

SbMATE, near the 25 kb position in Figure 3a. Overall, this

suggests that causal variants are located between loci 161 and

12487.

Haplotype Diversity and the Fine Structure of the AltSB

Locus
Consistent with the steep decrease in LD observed in the AltSB

region, the four gamete test revealed at least five likely

recombination events in the region, with one intragenic recom-

bination event detected in the second intron of SbMATE (between

loci 6083 and 6097, Figure 4a). Because recombination may create

homoplasy [32], introducing ambiguity into the relationships

among AltSB haplotypes, a haplotype network was built based on

nine loci associated with Al tolerance, comprising eight different

haplotypes (Figure 4b). This network shows the mutational

relationships among the haplotypes, but it does not necessarily

represent the mutational history, which is unknown. The two

haplotypes with the highest frequency by far were H1 and H2,

which differ only by a T(H2) « C(H1) transition at the outer edge

of the AltSB region (locus 24804), with the C allele being present in

all the other haplotypes.

Under neutrality, there is an expected relationship between

haplotype frequency and haplotype age [33]. That is, the most

common allele is likely to be the oldest with a probability equal to

its frequency [34,35]. Therefore, in view of their much higher

frequency with respect to the other haplotypes, H1 and H2 appear

to be the ancestral types in which Al tolerance mutations arose.

Supporting this hypothesis is the high frequency of H1 in the

subpopulation Q5 that includes the bicolor race, which is believed

to be the ancestral morphological race from which the other

sorghum races originated [36]. The only haplotype composed

exclusively of alleles increasing Al tolerance was H5, which carries

four alleles not found on any other haplotype. Interestingly, the

putative ancestral haplotypes H2/H1 were formed exclusively by

alleles associated with Al sensitivity, except for the C allele at the

Figure 1. LD decay in the AltSB region. In red is the prediction obtained by fitting a nonlinear regression model of the squared correlation of allele
frequencies (r2) as a function of physical distance between pairs of loci based on the drift-recombination model [40]. The regression coefficient (b1,
**p,0.0001) and the fraction of the total variance explained by the nonlinear model (1– SSR/SST) are shown, where SSR and SST are the sum of
squares of error and total, respectively.
doi:10.1371/journal.pone.0087438.g001

Table 1. Mean squared allele-frequency correlations (r2) and
respective standard deviation across the AltSB region.

Region (bp) Number of sites Mean r2 Standard Deviation

1–500 673 0.73 0.40

501–1024 51 0.02 0.04

1088–5079 289 0.14 0.30

5092–24934 418 0.11 0.22

doi:10.1371/journal.pone.0087438.t001

Genetic Dissection of Sorghum Aluminum Tolerance
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24804 locus in H1. However, this locus showed only marginal

association with Al tolerance and also had a negligible effect in

RNRG5d (Table S2) indicating that it does not provide significant

Al tolerance to the putative ancestral haplotype.

Incompatible splits depicted by loops in the network may

represent events such as hybridization, horizontal gene transfer or

recombination [37]. The low frequency haplotypes, H4, H6, H7

and H8, which are formed by alleles associated with both Al

tolerance and Al sensitivity, are possibly the result of recombina-

tion events involving other haplotypes. Based on their higher

frequencies and allelic constitution, with alternative alleles at all

loci, H1 and H5 may have been involved in recombination events

giving rise to H4, H6, H7 and H8. This is supported by the

position of the recombination events detected by the four gamete

test (see recombination breakpoints in H4, H6, H7 and H8 in

Figure 4a).

Jointly considering H1 and H2, the percentage of Al tolerant

and intermediate accessions harboring either haplotype was rather

low (,11%). In contrast, the vast majority of the accessions

carrying the H5 haplotype, ,90%, were either Al tolerant or

intermediately tolerant. Significantly differently from the case for

H1 and H2, H5 is present exclusively in subpopulations Q1, Q3

and Q6, which are composed primarily of guinea accessions with

western (Q1) and southern African and Asian (Q6) origins, as well

as breeding derivatives (Q3).

Interestingly, the A « C transversion at the 6083 locus appears

to correlate well with the occurrence of a high level of Al tolerance

in sorghum. Considering the H5 haplotype and the putative

recombinant haplotypes in the network loop, high Al tolerance

was more frequently found in haplotypes carrying the A allele

(eight Al tolerant accessions in H5, H6 and H8) rather than the C

allele (only one Al tolerant accession in H3, H4 and H7) at the

6083 locus. Recombination was deemed important for the

evolution of the b-globin region in humans [35]. Similarly,

intra-locus recombination appears to be an important process

underlying the haplotypic diversity for the sorghum Al tolerance

locus, AltSB.

Allele Mining
In the context of allele mining, we then set out to investigate the

power of different associated loci to recover Al tolerant and

intermediate accessions in the association panel. Table 2 shows

that loci combining high –log(p) for association with Al tolerance

and lower MAFs, between 0.06 and 0.10, were the most efficient

ones in recovering Al tolerant accessions in the panel. For

example, the loci 6083 and 6094 in the second intron of SbMATE,

and 8364, 8423 and 12487 downstream of its coding region,

recovered between 79 to 86% of Al tolerant and intermediate

accessions. Among those, the 6083 locus stands out as it recovers

nine out of the 14 highly Al tolerant accessions. Complementarity

between associated loci is compromised by the finding that loci

Figure 2. Model comparison for type I error control. Type I error distribution obtained with the naı̈ve, Q6, K and Q6+ K models using 38 SSR loci
and phenotypic traits related to Al tolerance. Under the expectation that the randomly distributed SSR loci are not associated with Al tolerance,
models that properly control the type I error should show a uniform distribution of p-values along a diagonal line in the cumulative plot. Loci with
MAF .0.1 were used.
doi:10.1371/journal.pone.0087438.g002
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recovering additional Al tolerant accessions, such as 6097 and

24804 showed rather high MAFs (0.32–0.39), undesirably co-

selecting ,80% of Al sensitive accessions.

Discussion

Fast LD Decay in the AltSB Region
Typically, LD decay estimates in sorghum are variable and

range from 15–20 kb [38], to 50–100 kb [29] and as high as

150 kb [39]. Based on the drift-recombination model, LD in the

AltSB region based on r2 dropped to ,0.2 and close to zero for sites

separated by 1 kb and 5 kb, respectively. Strikingly, this rather

rapid rate of decay is more comparable to that in the outcrossing

species, maize [40,41,42], than to that in previous reports on the

largely self-pollinating sorghum. LD is the complex result of the

history of recombination as well as the mutational history [43],

which are profoundly affected by demographic factors among

others. Interestingly, Lin and colleagues [44] screened 30,000

gametes to fine map the Shattering1 (Sh1) gene to a 17 kb region on

sorghum chromosome 1. In comparison, fine mapping of the AltSB

locus involved the screening of only 4,170 gametes, one seventh of

the population size in the Sh1 study, to resolve SbMATE into a

24.6 kb region [12]. Thus, for AltSB, local factors appear to be

dominant in determining the pattern of LD across the Al tolerance

locus. It is possible that the AltSB location towards the end of

sorghum chromosome 3, which is enriched in gene content [45], is

Figure 3. Association analysis for polymorphisms in the AltSB region and Al tolerance. Association analysis with the Q6+ K model was
performed with RNRG5d. (A) Statistical significance is expressed as –log10(p) and the p,0.01 threshold is represented by the red horizontal line.
Polymorphisms are shown along the x-axis and are linked to the schematic below this graph which depicts their physical location in the 24.6 kb
region where SbMATE (exons shown as gray boxes connected to black lines representing introns) was mapped on chromosome 3 (A1 to A5 depict
amplicons harboring polymorphisms, Table S5). The corresponding physical positions in the sorghum genome are shown below the scale and were
obtained by sequence similarity analysis (http://www.phytozome.net). The alleles at each loci are shown in the x-axis following the locus designation,
with indels represented by the number of repeats, except for the MITE insertion, which was coded as described in the Material and Methods session.
(B) Linkage disequilibrium expressed by pairwise D’ estimates [65] among loci associated with Al tolerance. p-values obtained with the Fisher exact
test are shown. (C) Allele substitution effect for the 6083 locus. The slope of the linear regression line indicates an allele substitution effect of 53.9%
RNRG5d (p,2E-16).
doi:10.1371/journal.pone.0087438.g003
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associated with local factors enhancing recombination. In maize,

MacMullen and colleagues [46] observed the absence of loci with

genome-wide effects on recombination, suggesting the importance

of numerous but localized regions affecting recombination, which

could be structural chromosome- or family-specific variants.

Low Frequency Variants within the AltSB Locus are Highly
Associated with Al Tolerance

In the present study, we either sequenced or genotyped all

polymorphisms previously detected between the parents of the

mapping population used to positionally clone SbMATE. Causative

polymorphisms are thus expected to be included among loci

displaying statistically significant associations with Al tolerance.

Association mapping is limited when the trait analyzed is

correlated with population structure [47] as is the case of Al

tolerance both in sorghum [30] and rice [48]. However, because

the proportion of the phenotypic variance explained by population

structure alone in our sorghum association panel was only 16%

compared to 57% in rice, we expect that a substantial fraction of

the phenotypic variance would still be available for capture by

Quantitative Trait Nucleotides (QTNs), even in the presence of

population membership cofactors in our mixed model. Indeed, 14

loci associated with Al tolerance were found in the AltSB region,

with 6083 showing the strongest association signal. Because

multiple QTNs under LD may control Al tolerance conferred

by the AltSB locus, it is conceivable that 6083 reflects an indirect

Figure 4. Relationship among AltSB haplotypes. (A) Haplotypes with recombination (RC) breakpoints defined by the four-gamete test (two
additional possible breakpoints between loci 6097/8364 and 12487/25094 were also detected). Alleles associated with Al tolerance (RNRG5d) are in
bold (at the 161 and 12487 loci, 7/0 and 19/0 depict a 7 bp and a 19 bp indel). Haplotype frequency (f) and the number of Al tolerant (T, RNRG5d

.80%) intermediate (I, 30%,RNRG5d ,80%) and Al sensitive (S, RNRG5d ,30%) accessions within each haplotype are shown. (B) AltSB network based
on nine sites associated with Al tolerance. The circle areas are proportional to haplotype frequencies except for H1and H2, whose areas were reduced
by 2.5-fold due to their much higher frequencies. Colored areas are proportional to the number of accessions within each of the six subpopulations
defined in [30]: Q1 (guinea accessions from western Africa and guinea margaritiferum accessions), Q2 (caudatum accessions from Africa and group of
transplanted caudatum and durra accessions from Lake Chad region), Q3 (lines from the Embrapa collection and US), Q4 (kafir accessions from
southern Africa), Q5 (durra accessions from central eastern Africa and from Asia; bicolor and caudatum accessions from Asia), Q6 (guinea accessions
from southern Africa and Asia).
doi:10.1371/journal.pone.0087438.g004
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association with one or more causal polymorphism(s) in LD with

this locus.

The proportions of Al tolerant and intermediate accessions in

the association panel were 6 and 14%, respectively [30]. We

observed that loci with extreme association probabilities (log10(p)

.9) showed a rather narrow MAF range, between 0.06 and 0.11,

with 6083 showing MAF = 0.10 (Table S3) and 2log10(p) > 15 for

association with Al tolerance. Higher frequency common variants

under LD with presumptive causal variants for the Sh1 gene in

sorghum led to synthetic association signals stronger than those of

the causal variants [44]. Here, polymorphisms falling within the

frequency interval for Al tolerant and intermediate accessions

produced the strongest association signals. For example, although

MAFs for loci in the more distant regions with respect to SbMATE,

such as 161 (MAF = 0.18, Table S3) and 199 (0.17) in the 59 region

and 24804 (0.39) and 25094 (0.14) in the 39 region were higher

than that for 6083, the respective association signals were much

lower. Because the Al tolerance range for intermediate accessions

was rather broad (30%,RNRG5d ,80%), it is likely that in

addition to the Al tolerant accessions, only the fraction of the

intermediate accessions that are most Al tolerant within that

intermediate category contribute significantly to the association

signals. As previously reported, the power to detect a QTL is

expected to be the highest when the associated marker allele has a

similar frequency to that of the QTL [49,50].

Causal Variants are Likely Localized in a 6 kb Region
Encompassing a Variable MITE Insertion and Intronic
Polymorphisms

The detection of extensive intra-locus recombination events

(Figure 4b) provides support for fast dissipation of LD across the

AltSB region as revealed by fitting the drift-recombination model

for LD decay. These recombinants may help to narrow down

further the location of the causal variants affecting SbMATE

expression.

Based on the proportion of Al tolerant and intermediate

accessions within the Al tolerant haplotype, H5, and in the

putatively recombinant haplotypes, the causative polymorphism(s)

enhancing SbMATE expression and thus Al tolerance are likely

located at or upstream of the 6083 locus within the second intron

of SbMATE, including the MITE insertion in the promoter region.

This leads to a reduction of the physical interval where causative

mutations lie from previous 24.6 kb to only ,6 kb. The location

of the causal variants is supported by the observation that 8 of the

13 Al tolerant accessions in our haplotype network carried either

the Al tolerant haplotype, H5, or recombinant haplotypes which

retained either part (H8) or the whole (H6) region from H5

delimited by the loci, 161 and 6083, with all these accessions

showing the H5 allele (A) at the 6083 locus. Among the accessions

harboring H5 are the Al tolerant parent of the mapping

population used to positionally clone SbMATE, SC283, and

IS14351, which is the most Al tolerant accession in the panel [30],

with both accessions showing high levels of SbMATE expression.

Another highly Al tolerant line that shows high SbMATE

expression is SC566 [30], which shows the recombinant haplo-

type, H8.

Of the remaining five Al tolerant accessions with the C allele at

the 6083 locus, one accession carried the H4 haplotype, whereas

one and three accessions carried the putative ancestral haplotypes,

H1 and H2, respectively. In such a diverse panel, non-allelic

heterogeneity in the form of different Al tolerance genes

controlling distinct physiological mechanisms of Al tolerance

may occur, as has been previously reported in rice for genes

regulating panicle length [51]. In fact, we have previously reported

both on allelic and non-allelic heterogeneity for Al tolerance based

on the sorghum AltSB locus [16, 26, 30). Our previous studies with

NILs indicated extensive allelic heterogeneity in sorghum

presumably arising from variations in cis-factors within AltSB

[26]. Therefore, the co-occurrence of weak AltSB alleles showing

low SbMATE expression in conjunction with other Al tolerance

genes in the genetic background may account for the presence of

Al tolerant accessions with the H1 and H2 haplotypes, which are

formed by alleles linked in repulsion with Al tolerance. In fact, we

have previously reported on non-allelic heterogeneity for Al

tolerance in two accessions carrying the H2 haplotype, 5DX [16]

and IS29691 [30]. Our data indicate that 5DX possesses a rather

weak AltSB allele and that the introgression of different Al tolerant

gene(s) into the ‘DX’ genetic background is likely to account for its

high levels of Al tolerance [16]. The SbMATE expression level in

SC175, the remaining accession with the H2 haplotype, and in

IS25077 that harbors H4, was approximately 4-fold smaller than

that in the highly Al tolerant line, SC283 (see Figure 3 in [30] for

data on IS25077 and Figure 3 in [26] for SC175), suggesting a

similar situation in these lines to that observed in 5DX. Finally,

although showing high SbMATE expression, marker-trait associ-

ation with markers tightly linked to AltSB in a backcross family

derived from the single Al tolerant accession harboring the H1

haplotype, IS23142, was not significant (Figure 3 and Table S3,

[30]). This could be due to the recessive mode of gene action for Al

tolerance observed in this accession and/or the presence of other

Al tolerance genes in its background. Therefore, our data suggest

the presence of distinct, non AltSB-based physiological mechanisms

of Al tolerance in the putative ancestral haplotypes and in H4.

Prevalence of accessions showing these mechanisms is expected in

H1 and H2 due to the high frequency of these haplotypes in the

association panel.

On the other hand, although the H5 haplotype was almost

entirely composed of either Al tolerant or intermediate accessions,

one Al-sensitive accession was found carrying this otherwise totally

Al tolerant haplotype. One possible explanation is the significant

occurrence of genetic background effects on Al tolerance

controlled by SbMATE [26]. Accordingly, these background

effects are the result of accessory loci acting in trans, without

which SbMATE expression and Al tolerance can be dramatically

reduced.

A Possible Unified Origin of Al Tolerance Conferred by
AltSB in West African Guinea Types

The landrace accessions used in this study were chosen to

provide representation of cultivated landrace sorghums from the

whole world, with sampling based on race classification, latitude of

origin, response to day length, and form of cultivation [52]. A core

reference set including a large proportion of these accessions was

found to capture ,80% of the SSR alleles detected in a larger,

3367-member collection, indicating good representation of the

global genetic diversity in sorghum [53]. This landrace collection

has been recently characterized with over ,265,000 SNP markers

to investigate genomic patterns of diversification in sorghum [39].

The haplotypic diversity for AltSB based on loci associated with

Al tolerance provides insights into the origin of the mutations

conferring Al tolerance in sorghum. The haplotype H5 was

present exclusively in subpopulations Q1, Q3 and Q6, which are

composed primarily of guinea accessions with western (Q1) and

southern African and Asian (Q6) origins, as well as breeding

derivatives (Q3).With a model selection procedure based on the

Bayesian Information Criterion [54], we have previously shown

that these three subpopulations are the most important ones in

explaining the variation in Al tolerance across the association

Genetic Dissection of Sorghum Aluminum Tolerance
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panel [30]. In addition, Q1 membership was the most prevalent in

H5 accessions and was also frequent in haplotypes in the network

loop, where recombination events involving H5 may have taken

place.

In conjunction with the much higher frequency of the putative

ancestral haplotypes H1/H2 compared to H5, the data presented

here support a more recent origin of Al tolerance in the primary

domestication center of the guinea race, in West Africa [36].

Given that differentiated haplotypes closely related to H5 but

predominantly found in Q6 were not observed in the dataset, Al

tolerant haplotypes in the secondary domestication center in

South/East Africa are likely to have been transported from West

Africa during the guinea radiation from the West to the southern

domestication center of the guinea race [55,56]. Therefore, the

scenario described here suggests a single geographic and racial

origin of Al tolerance mutations within AltSB in primordial guinea

domesticates in West Africa, with subsequent limited interracial

spread of Al tolerance. This is consistent with our previous studies

indicating non-random distribution of Al tolerance in the sorghum

genetic diversity continuum [30].

Analysis of the Power of Single SNPs versus AltSB

Haplotypes for Allele Mining in Sorghum
One important issue is whether single SNPs or haplotypes

would be the most effective type of markers for allele mining based

on AltSB. Considering the associated loci with allele frequency

closely matching that of Al tolerance (6083, 6094, 8364, 8423 and

12487), there would be no clear advantage in using haplotypes

over the single SNPs for allele mining, as little or no complemen-

tation can be exploited in recovering Al tolerant accessions (note

that the 6083 locus alone recovers most of the Al tolerant

accessions in the panel). This is in line with the observation in

barley that when the causal SNP is one of the genotyped markers,

the power of single SNPs is superior to that of haplotypes [49].

The consequence of using loci with unmatched allele frequencies,

such as 6097 which is only 14 bp from 6083, is the recovery of a

large number of Al sensitive accessions, probably due to extensive

recombination with the causal variant(s). However, allele mining

based solely on 6083 would also recover ,20% of the Al sensitive

accessions in the panel, which is likely the result of genetic

background effects reducing SbMATE expression as previously

reported [26].

It is possible that multiple causal variants contribute to Al

tolerance conferred by AltSB. For example, the strong association

signal observed for 6083 may reflect a role for the second SbMATE

intron in enhancing gene expression. Introns are known to

increase mRNA levels by acting as transcriptional enhancers,

among other mechanisms [57,58,59]. In addition, here we show

that the MITE insertion region in the SbMATE promoter is

associated with Al tolerance. This result suggests a role for the

transposon insertion in enhancing SbMATE expression, as has

been observed in wheat Al tolerance involving TaMATE1B [19].

We are currently working to identify both the cis factors enhancing

SbMATE expression and the trans-acting factors involved in genetic

background effects.

The associated loci reported in this study are now available for

high throughput germplasm screening through the Integrated

Breeding Platform from the Generation Challenge Programme

(https://www.integratedbreeding.net/). Using this Platform with

the data presented here should allow us to build a molecular

pipeline to increase yield stability for sorghum cultivated on acidic,

Al toxic soils.

Materials and Methods

Plant Material
A set of 209 accessions from the landrace collection described in

[52] and an additional 45 inbred lines formed the association

panel that was used in this study. The landrace collection is

representative of the genetic diversity present in cultivated

sorghum [52], whereas the inbred lines are frequently used in

breeding programs in the US and Brazil, including highly Al

tolerant donors [16].

Assessment of Al Tolerance in Nutrient Solution
Al tolerance data collection was undertaken previously [30]. A

total of 254 sorghum accessions were evaluated in nutrient solution

containing {0} or {27} mM Al3+. Values inside brackets indicate

Al3+ activity, which was estimated with the speciation software

program, GEOCHEM-EZ [60,61].

Seeds of each genotype were germinated for four days and

seedlings were transferred to containers with nutrient solution

lacking Al at pH 4.0. After 24 h of acclimation, the initial length of

each seedling’s primary root growing in control solution (ilc) was

measured. The solution was then replaced with nutrient solution of

identical composition but containing either no Al or {27} mM Al3+

supplied as AlK(SO4)2.12H2O. Final root lengths under Al

treatment (flAl) or in control solution (flc) were obtained after

three and five days of exposure to Al. For each inbred line, relative

percent values of net root growth inhibition after three (RNRG3d)

and five (RNRG5d) days of Al exposure were estimated by dividing

the net root growth under Al treatment (flAl–ilc) by the net root

growth without Al (flc–ilc). We adopted here the same Al tolerance

classification described previously [30] for the sorghum accessions:

Al sensitive (RNRG5d ,30%), intermediately tolerant

(30%,RNRG5d ,80%, designated intermediate) and Al tolerant

(RNRG5d .80%).

Candidate Quantitative Trait Nucleotides (QTNs)
We previously sequenced the entire 24.6 kb AltSB region in the

Al tolerant and sensitive parents, SC283 and BR007, and

identified candidate QTNs (depicted in Figure 1d in [12]). For

the association analysis conducted here, we sequenced six

amplicons spanning the QTN regions including a T«A

transversion in the first exon of SbMATE [26]. The genomic

structure for the MITE insertion was previously obtained in four

sorghum genotypes (Figure 3e and Supplementary Figure 3 in

[12]). In the present study, the MITE insertion was genotyped in

the association panel as five biallelic (presence/absence) loci. The

four previously detected MITE alleles were designated MI

(456 bp), MII (1,184 bp), MIII (1,514 bp), MIV (1,912). An

additional 2,280 bp allele detected only in the association panel

was designated MV.

PCR and DNA Sequencing
Leaf tissues from three plants of each accession were used for

DNA isolation according to [62]. Amplifications were carried out

in a reaction volume of 20 mL that contained 30 ng of genomic

DNA, 10X polymerase chain reaction buffer containing 0.5 mM

dNTP, 4 mM MgCl2, 10 pmol of each primer, 5% of dimethyl

sulfoxide (DMSO) and 1 U of Taq DNA polymerase (Phoneutria,

Belo Horizonte, MG), following the amplification conditions

described in Table S5 that also contains the sequences for the

primers used in this study. PCR products were treated with 0.6 U

of shrimp alkaline phosphatase (SAP, SB Corporation, Cleveland,

OH) and 1.5 U of EXO I (USB Corporation, Cleveland, OH) in a

reaction volume of 10 mL, which contained 6 mL of PCR

Genetic Dissection of Sorghum Aluminum Tolerance
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reactions, 0.4 mL 10X SAP buffer (USB Corporation, Clevelend,

OH). Digestion proceeded with incubation at 37uC for 30 min

followed by 80uC for 10 min for enzyme inactivation. Sequencing

reactions were carried out in a 10 mL reaction volume which

contained 5 mL of digested PCR products, 2 mL of Big Dye V3.1

(Applied Biosystems, Forter City, CA), 2 mL of 5X buffer (Applied

Biosystems, Forter City, CA) and 5 pmol of each primer.

Sequencing reactions proceeded at 96uC for 4 min, 30 cycles at

96uC for 10 sec, 50uC for 5 sec and 60uC for 4 min. Sequencing

reactions were analyzed on a ABI3100 sequencer (Applied

Biosystems, Foster City, CA). Sequences were aligned and

manually edited using the software SEQMAN (DNAstar,

Madison, WI). MITE polymorphisms were scored on 1% (w/v)

agarose gels.

Analysis of Population Structure
Population structure (Q) was previously estimated based on 38

SSR loci which are evenly distributed across the sorghum genome,

from a sorghum SSR kit ([53], http://sat.cirad.fr/sat/

sorghum_SSR_kit/) developed within the Generation Challenge

Programme (GCP, http://www.generationcp.org/). The complete

description of the methods used for these analyses in addition to

the SSR primer sequences and amplification conditions can be

found in [30]. Briefly, the Bayesian cluster analysis as implemented

in the software STRUCTURE [63,64] was used to estimate the

number of subpopulations based on the SSR data set. The

admixture model with correlated allele frequencies was adopted,

with a burn-in period of 100,000 and a run length of 1,000,000,

with five independent replications for each k (number of

subpopulations).

Linkage Disequilibrium (LD)
LD between polymorphisms with minor allele frequency

exceeding 0.05 was estimated using the standardized disequilib-

rium coefficient (D’, [65]) and squared allele-frequency correla-

tions (r2, [66]) using the TASSEL software program (http://www.

maizegenetics.net/bioinformatics/tasselindex.htm). Loci in signif-

icant LD based on D’ were defined with the Fisher’s exact test

(p,0.05). The decay of LD with physical distance (bp) was

estimated using nonlinear regression (PROC NLIN, SASH
software, SAS Institute Inc., Cary, NC, USA) based on the drift-

recombination model described in [40]. Accordingly, the expected

value of r2 under drift-recombination equilibrium is E(r2) = 1/

(1+C), where C = 4Nc (N is effective population size and c is the

recombination fraction between loci, [67]).

Association Models
We tested three models to control for false positive associations

(type I error) using the 38 randomly distributed SSR loci and

various Al tolerance data: RNRG3d, RNRG5d, Visual Root Damage

(VRD), Induction of Root Growth (IRG) and Principal Compo-

nents (PC) 1 and PC2, which are described in [30]). This marker

density does not provide genome saturation within the low LD

context in the association panel [29] and consequently, the

chances of association with the phenotypic traits can be considered

negligible. Thus, association analysis with these markers provides a

null distribution to test the efficiency at which different models

control for false positive associations. The naı̈ve model, which does

not account for familial relatedness or kinship, is y = Aa+e; the Q

model, which accounts for population structure, is y = Aa+Qn+e;

the K model, which accounts for familial relatedness or kinship, is

expressed as y = Aa+Zu+e. In these models, y is a vector of

phenotypic observations, a is a vector of fixed effects related to

SNP effects (QTNs), e is a vector of residual effects, n is a vector of

fixed effects related to population structure and u is a vector of

polygene background random effects related to familial related-

ness. A and Z are the incidence matrices of 0s and 1s, relating a
and u, respectively, to y. Q is the population membership

assignment matrix obtained from the software, STRUCTURE

relating y to n. Finally, y = Aa+Qn+Zu+e, the unified Q+K mixed

model that jointly accounts for population structure and familial

relatedness [68] was fitted to the data. The variances of the

random effects are expressed as Var(u) = 2KVg and Var(-
e) = RVR, where K is a 2546254 matrix based on the proportion

of shared alleles values [69], obtained with the PowerMarker

software [70], R is a 2546254 matrix with the off-diagonal

elements being zero and the diagonal elements being the

reciprocal of the number of observations for which each

phenotypic data point was obtained, and Vg and VR are the

genetic and residual variance, respectively.

Haplotype Diversity and Network
A simplified haplotype network was constructed by maximum

parsimony, using nine biallelic sites that were associated with Al

tolerance, and omitting singleton haplotypes. The four-gamete test

[71] was applied to identify possible recombination events.
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