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kind of success stories however yet to be 
achieved in routine in above mentioned 
orphan crops.

Here we provide a short overview of 
both the potential and the challenges in 
implementing genomics-assisted breeding 
in orphan crops. Additionally, we present 
a critical appraisal of the application of 
association mapping or genome-wide 
association studies (GWAS)11, marker-
assisted recurrent selection (MARS)7 and 
genomic selection (GS)12,13 in improving 
grain yield of orphan crops in developing 
countries.

Until recently, only major commercial 
crop species have benefited from the 
application of next-generation sequencing 
and high-throughput tools in molecular 
biology. Today, however, the use of such 
high-throughput technologies to assay 
molecular markers and transcript sequences, 
genome structural variation, gene space or 
even genome sequences is now feasible for 
orphan crops14–16. The low sequencing cost 
has motivated Elshire et al.17 to develop a 
robust, cost-effective, highly multiplexed 
sequencing approach known as ‘genotyping 
by sequencing’, which is expected to 
replace high-density-marker genotyping 
(Supplementary Fig. 1). Importantly, 
these new sequencing technologies for 
characterizing germplasm collections will 
help overcome ‘ascertainment bias’, which has 
hampered genotypic evaluation of diverse 
collections (Supplementary Fig. 2).

One of the prerequisites of molecular 
breeding has been the identification of 
molecular markers associated with traits 
of interest18. Linkage mapping to detect 
QTLs generally focuses on the analysis 
of families from crosses between two 
inbred lines. Although the statistical 
power for QTL detection is high, the 
genetic resolution of these QTLs is poor. 
Conversely, GWAS or association mapping 
takes advantage of historic recombinations 
that reveal chromosomal regions of linkage 
disequilibrium (LD) where markers remain 
associated with traits of interest over many 
generations. GWAS, widely used in human 
genetics, is being increasingly adopted in 
crop species like maize19–23 and rice24–27. 
The best features of linkage and association 
approaches can be combined through nested 
association mapping populations28,29 that 
enable high-power and high-resolution 
analysis through joint linkage mapping 
and association mapping. However, many 
breeders feel that the association mapping 
approach has failed to deliver beneficial 
alleles or haplotypes for crop improvement. 

To the Editor:
Advances in genomics over the past 20 
years have enhanced the precision and 
efficiency of breeding programs1 in many 
temperate cereal crops2,3. One of the 
first applications of genomics-assisted 
breeding has been the introgression of loci 
for resistance to biotic stresses or major 
quantitative trait loci (QTLs) for tolerance to 
abiotic stresses into elite genotypes through 
marker-assisted backcrossing (MABC)4. 
For instance, introgression of a major QTL 
for submergence tolerance (Sub1) into 
widely grown rice varieties has substantially 
improved yield in >15 million hectares of 
rain-fed low-land rice in South and Southeast 
Asia5. Despite this success story, the overall 
adoption of genomics-assisted breeding 
in developing countries is still limited 
especially for complex traits like yield under 
environmental stress in several other crops6,7.

Although maize, rice and wheat dominate 
global food production, several other 
crops are of great importance for some 
communities in developing countries 
(Supplementary Table 1). This group 
includes sorghum and millets, groundnut, 
cowpea, common bean, chickpea, pigeonpea, 
cassava, yam and sweet potato (Table 1). As 
they are not extensively traded and receive 
little attention from researchers compared 
to the main crops, these important crops 
for marginal environments of Africa, Asia 
and South America are often referred to as 
‘orphan crops’. Breeding for orphan crops is 
lagging behind major crops although they 
are key staple crops in many low-income 
countries where small-holder farmers cannot 
afford to buy improved seed. The magnitude 
of the breeding effort for those orphan 
crops and the capacity of adopting modern 
technologies is extremely variable across 

developing countries and generally directly 
related to the health of the national economy.

In any crop, many of the key traits affecting 
crop performance are under complex genetic 
control and show quantitative variation8. 
These traits are of growing importance in 
breeding as favorable alleles for most simply 
inherited traits are already prevalent and 
often fixed in elite germplasm, suggesting 
that genetic gain for such traits may be 
difficult to achieve. The overall objective for 
most breeders is to improve crop productivity 
in a target environment. Yield is a direct 
reflection of biomass or the proportion of 
biomass that is converted to the harvestable 
commodity. Yield is a result of the integration 
and interaction of many physiological 
and metabolic processes over time and in 
environments that are increasingly variable 
due to climate change9.

The prediction of phenotype on the basis 
of genotypic composition is challenging, 
as crop performance can be profoundly 
influenced by weather conditions, soil 
composition, pathogens and pests and 
trial management (e.g., fertilizer input, 
weed control, water supply). Interaction 
of genotype with the environment can be 
evaluated through suitable experimental 
design, multiple site evaluation and 
careful measurement of the environmental 
variables. Accurate prediction of plant 
phenotype from genotype through 
genomics-assisted breeding is exacerbated 
when landraces or wild germplasm, 
representing different gene pools, are used 
as sources of favorable alleles for target 
traits. These sources have been important 
in improving disease and pest resistance 
traits, some traits influencing nutritional 
and sensory quality traits, and in some 
cases polygenic traits such as yield10. Such 
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through many generations, particularly when 
only a moderate number of markers are used. 
This is exactly what GWAS excels at. The 
challenge is now to bridge these models and 
approaches (GWAS and genomic selection) 
to accelerate genetic gains in orphan crops.

Although several success stories have 
been published, mainly based on the MABC 
approach4, the overall impact of genomics-
assisted breeding on crop development 
programs in developing countries remains 
very limited6,7, especially for complex 
traits. In the short term, the adoption and 
successful application of this approach 
outside of developed countries requires the 
following: first, scientists trained in modern 
breeding technologies; second, improved 
local infrastructure capacity for accurate and 
relevant phenotyping; third, local access to 
marker technologies for efficient genotyping; 
and fourth, the deployment of suitable data-
management systems (Box 1).

High-throughput genotyping and 
sequencing facilities could benefit from 
economies of scale, as large-scale service 
laboratories are also preferred by large 
seed companies. With the availability of 
sequencing service laboratories, the same 

Limited population size, low heritability, lack 
of candidate genes, low marker density and 
the difficulty in identifying beneficial alleles 
are the main limiting factors. Furthermore, 
variation in phenology greatly reduces the 
effectiveness of association mapping in 
singling out the effects of loci that influence 
yield potential per se as opposed to those 
affecting plant development or phenology. 
Clearly, many or, indeed, most, functional 
genes in the genome will contribute 
directly or indirectly to yield. Therefore, it 
is unreasonable to expect that any genetic 
approach will unequivocally resolve the 
plethora of polymorphisms that contribute 
directly or indirectly to yield, even with 
proper experimental design30 and the use of 
appropriate GWAS statistical models31,32.

Cloning of QTLs is becoming increasingly 
feasible for manipulating quantitative traits 
by means of marker-assisted selection or 
genetic engineering33. Over 50 major QTLs 
of agronomic interest have been cloned34. 
QTL cloning has also revealed the important 
role of noncoding sequences in modulating 
gene expression35. In particular, the 
availability of gene sequences allows a direct 
and targeted search of novel alleles, hence 

expanding the pool of variability available for 
breeding purposes.

One of the difficulties for developing 
superior genotypes for complex traits such 
as ‘yield in stressful environments’ is that 
these traits are often controlled by multiple, 
small-effect QTLs and/or several epistatic 
QTLs. When selecting for those complex 
traits, MARS or GS appears to be best suited 
for stacking beneficial QTL alleles (Fig. 1). 
MARS7 allows the improvement of polygenic 
traits by stacking favorable alleles at a large 
number (10–40) of the most significant loci 
involved in the expression of the target traits. 
Although MARS is being used routinely 
in private sector breeding programs3, no 
published reports that discuss its use by the 
public sector are available. In GS12,13 the 
breeding value of genotypes is calculated 
by incorporating data for all marker loci. 
Implementation of GS indicates that the 
quality of prediction decays with generational 
distance from the training population36. Part 
of this decay is the result of basic GS models 
accurately capturing kinship or broad-scale 
pedigree relatedness, but failing to identify 
markers in extremely high LD with the causal 
loci. Such loci are likely to remain informative 

 Box 1  Strengthening molecular breeding and delivery capacity in developing countries

To succeed, molecular and genomics approaches must build on 
well-structured breeding programs, which are often not established 
in developing countries with poor economies, and, therefore, 
limited infrastructure and human resources are real bottlenecks 
to the effective use of genomics-assisted breeding approaches in 
those countries. To overtake those bottlenecks, training in modern 
plant breeding skills and fostering integrated breeding strategies 
through systemic collaboration among partners (e.g., national 
programs and CGIAR centers) and collaborative groups to share 
knowledge and expertise (e.g., communities of practice) remain 
a high priority. In addition, access to emerging platforms like the 
Integrated Breeding platform (IBp; http://www.integratedbreeding.
net/), a one-stop shop for information, analytical tools and related 
services to design and carry out integrated breeding projects will 
provide access to information and the latest technologies for 
integrated breeding in developing countries.

Reliable phenotypic data are a must for high-quality genetic 
studies39 and, most importantly, the application of the results 
toward cultivar improvement. One major, often underestimated 
aspect that limits the value of the collected data is their relevance 
to the conditions prevailing in the target environment40. An 
excellent example is provided by the improvement of drought 
tolerance: in this case, the dynamics of drought (e.g., timing, 
frequency, intensity and duration of the drought episodes) 
prevailing in different target environments can vary substantially. 
Most developing countries lack suitable field infrastructure for 
collection of accurate and reliable phenotypic data. Uncoordinated 
efforts among donor agencies, or one shot funding, also resulted 
sometimes in buying of sophisticated pieces of equipment that 

end up rusting in experimental stations in national programs. 
Some of the main reasons for this include lack of support to train 
researchers and/or technicians on the usage and maintenance of 
those equipments, or just lack of operational support to run the 
experiments that will require those equipments.

Guidelines on best practice must also be provided on how to 
design and run a trial and conduct precise phenotyping for genetic 
studies. This is even more critical when breeding is carried out 
in marginal environments, as is generally the case in developing 
countries, where genetic-environment interactions are generally 
large, thus reducing traits heritability. Under such conditions, 
selection based on yield only might not always be most efficient 
and genetic gain might be improved considering secondary traits 
as proxy to define a selection index (e.g., in MARS experiments). 
In those instances, secondary traits that are simple, cheap, 
nondestructive and fast to assay should be genetically highly 
correlated with grain yield in the target environment. Furthermore, 
these traits should be genetically variable and stable throughout 
the measurement period with a high level of heritability and should 
not be associated with any yield loss under nonstressful conditions.

Governmental and institutional commitment is critical for 
adoption of biotechnologies in developing countries. Strengthening 
the breeding and delivery capacity in national programs will 
also help address several other problems that have hampered 
biotechnology-based product development and delivery in the 
past. Of particular importance is ensuring that the technology 
is delivered to farmers in well-adapted and market-ready lines. 
Bottlenecks to the efficient delivery of improved varieties, such as 
weak extension or seed systems, must also be anticipated.
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assisted breeding, including for orphan crops. 
All of these advances will require enhanced 
capacity for precision phenotyping in target 
environments (Box 1). The phenotyping 
capacity could be enhanced by training and 
collaborative programs with Consultative 
Group on International Agricultural Research 
(CGIAR) institutions and advanced research 
organizations in tight collaboration with 
partners from developing countries.

The above approaches have the potential to 
convert orphan crops into genomic resource–
rich crops. Even the definition of an ‘orphan 
crop’ is rapidly changing. For instance, a few 
decades ago access to mutants was critical for 
genetic studies and peas, maize, barley and 
tomato were regarded as model crops, whereas 
rice was considered an orphan crop. In fewer 
than 20 years, however, rice has moved from 
being an orphan crop to become a core 
model for the cereals. Similarly, as a result of 
investment from several public initiatives, 
many orphan crops and legumes in particular 

approach can be adopted for breeding in 
developing countries, although sample 
shipment across national borders sometimes 
poses logistical and quarantine challenges, 
especially in the developing world, and 
raises concerns about germplasm protection. 
Even so, the availability of some medium-
scale genotyping and sequencing facilities 
in developing countries that have stable 
economies will be useful from a capacity-
building perspective, because it will expose 
scientists to modern technologies while 
allowing some of the projects to be run 
locally. Physically accessible facilities are 
often also important to build confidence by 
breeders in new technologies. 

An essential component of molecular 
breeding infrastructure is facile access to 
computational tools used in every step of the 
process, from sample handling to phenotype 
prediction. Some steps of the process require 
high-power computers and associated 
services. Such facilities could be shared, and 

perhaps located in genotyping centers, as 
long as high bandwidth network access is 
easily available. Computational tools needed 
at every breeding station are much more 
modest and a good laptop and internet access 
are usually sufficient.

Facilitated access to high-throughput 
genotyping and sequencing technologies, 
as mentioned above is expected to enhance 
breeding progress in developing countries 
in at least three ways: first, high-resolution 
germplasm fingerprinting by low-
coverage sequencing or single-nucleotide 
polymorphism genotyping will facilitate 
selection of parents for new crosses and 
introgression of novel alleles from exotic 
germplasm; second, accurate mapping of 
loci associated with traits of interest using 
either bi- or multiparental mapping or GWAS 
methodology will enhance identification of 
marker-trait associations of interest to the 
breeders; third, high-throughput genotyping 
or sequencing approaches will enable genome-
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Figure 1  Schematic representation of three 
molecular breeding approaches for crop 
improvement. (a) MABC is the most extensively 
used molecular breeding approach, largely 
deployed for introgressing transgene or major loci 
for resistance to biotic stress, grain quality traits or 
a major QTL explaining higher phenotypic variance 
for abiotic stress tolerance. In the absence of a 
predictive gene-based marker, the first step in this 
approach is identification of loci based on analysis 
of genotypic and phenotypic data from populations 
segregating for the traits of interest. Subsequently, 
the elite variety lacking the desired allele(s) at the 
target locus or loci is used for backcrossing with 
the donor genotype. Molecular markers associated 
with the QTL are used for screening the backcross 
populations for identification of the superior lines 
that possess the favorable QTL allele at each cycle 
of backcrossing. Depending on the population size 
and considering one or two target loci, two to three 
backcrosses are usually sufficient for recovering 
most of the recipient genome4. progress can be 
monitored with the help of randomly selected 
molecular markers for monitoring the background 
selection. After generating the backcross 
progenies with the desired genome coverage from 
the elite genotype, one cycle of selfing is done and 
homozygous MABC lines are used for selecting the 
superior lines for field evaluation. (b) The MARS 
approach is deployed to accumulate favorable 
alleles for 10–40 loci in a set of complex and 
simple traits including yield. In the first step, 
segregating populations are generated by crossing elite varieties that are superior for the targeted traits but presenting favorable alleles at different loci. These 
populations are genotyped and phenotyped at a suitable inbreeding level in the targeted environments and these data are used for identification of QTLs for 
the target traits. Looking at allelic complementarity at target loci, selected genotypes are crossed to stack favorable alleles across successive cycles of recurrent 
selection. After completing two to three recombinant cycles, superior lines selected based on ideal genotypes are self-fertilized for field evaluation. (c) The 
GS approach, rather than relying on mapped loci, uses the breeding values that are calculated based on high-density genotypic data and historical phenotypic 
data from a ‘training population’ usually made up of breeding lines. Based on genomic-estimated breeding values (GEBVs), superior lines are selected for new 
crosses. The progeny lines from these crosses are genotyped and, based on the model developed for calculating GEBVs with the training populations, GEBVs 
are calculated for the progeny lines. Subsequently, the progeny lines having higher GEBVs are used for the next cycle of crossing. At any point in the cycle, 
progeny lines with higher GEBVs can be extracted for the field evaluation.
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breeding approaches and their retention in 
developing countries coupled with adequate 
institutional and governmental support will 
be critical for the sustainable and effective 
integration of genomics-assisted breeding in 
crop improvement programs for ensuring food 
security in developing countries.
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are presently becoming genomic resource-
rich37. For example, a genome sequence has 
become available for pigeonpea38, whereas 
pea, the model legume crop from Mendel’s 
time, is yet to be sequenced.

The remaining ‘orphan crops’ are thus those 
that have genomes too complex to sequence 
or characterize. Complexity can be due to 
polyploidy or large genome size, as is the case 
for wheat. In wheat, many of the genomic 
resources taken for granted in other species 
are only now being developed (http://www.
wheatgenome.org/). Similar problems hamper 
resource development for sugarcane, onion, 
faba bean and many other important crops, 
horticultural and forestry species with large 
and complex genomes.

The ultimate aim of genomics-assisted 
breeding is to increase the rate of genetic gain 

across target environments, in less time and 
at lower cost compared with conventional 
selection based exclusively on phenotype. 
Nonetheless, it is critical to remember 
that even with the availability of the best 
genotyping resources, genomics-assisted 
breeding may not be successful in the absence 
of quality phenotypic data.

In our opinion, development and availability 
of genomic resources, due to advances in 
technology, should not be an issue anymore 
in the orphan crops. Centralized service 
facilities for high-throughput sequencing and 
genotyping, together with access to genomics 
and analytical breeding tools, should enhance 
implementation and adoption of molecular 
breeding in staple crops in developing 
countries. Continued training of breeders and 
geneticists in modern genomics and molecular 

Table 1  Details on production of three world’s major food crops and selected orphan crop species

Crop name Botanical name

Chromosome  
number (n), ploidy 
level (x), (genome 
size in Mbp)

Major producing countriesa

(production in million tonnes (MT)) Total world 
production 
(MT)1st 2nd 3rd 4th

World’s major crops 

Maize Zea mays 2n = 2x = 20                  
(2,500)

USA (333.01) China (164.10) Brazil (51.23) Mexico (20.14) 818.82

Wheat Triticum aestivum 2n = 6x = 42                
(16,000)

China (115.11) India (80.68) Russian Federation 
(61.73)

USA (60.31) 685.61

Rice Oryza sativa 2n = 2x = 24  
(430)

China (196.68) India  (133.70) Indonesia (64.39) Bangladesh (47.72) 685.24

Main Orphan Crops of developing countries

Cassava Manihot esculenta 2n = 2x = 36                     
(760)

Nigeria (36.80) Thailand (30.08) Brazil (24.40) Indonesia (22.03) 233.79

Sweet potato Ipomoea batatas 2n = 6x = 90                         
(2,200-3,000)

China (76.77) Uganda  (2.76) Nigeria (2.74) Indonesia (2.05) 102.29

Coconut Cocos nucifera 2n = 2x = 32                    
(3,600)

Indonesia (21.56) philippines (15.66) India (10.14) Sri Lanka (2.09) 61.7

Sorghum Sorghum bicolor 2n = 2x = 20                     
(750)

USA   (9.73) India         (7.25) Nigeria (5.27) Sudan (4.19) 56.09

Yam Dioscorea alata 2n = 2x = 40                                                                       
(550)

Nigeria (29.09) Côte d’Ivoire (6.90) Ghana (5.77) Benin (2.37) 49.18

Groundnut Arachis hypogaea 2n = 4x = 40                 
(2,890)

China (14.76) India (5.51) Nigeria (2.96) USA (1.67) 36.45

Millets
pearl millet (Pennisetum glaucum), 2n = 2x = 22 (2,450)                    
Finger millet (Eleucine coracana), 2n = 4x = 36 (3,000)
Foxtail millet (Setaria italica), 2n = 2x = 18 (423)

India (8.81) Nigeria (4.88) Niger (2.67) Mali (1.39) 26.7

Common bean Phaseolus vulgaris 2n = 2x = 22                     
(600)

Brazil (3.48) Myanmar (3.00) India (2.44) China (1.49) 20.69

Chickpea Cicer arietinum 2n = 2x = 16                     
(740)

India (7.06) pakistan (0.74) Turkey (0.56) Australia (0.44) 10.46

Cowpea Vigna unguiculata 2n = 2x = 22                      
(620)

Nigeria (2.36) Niger (1.55) Burkina Faso (0.32) Myanmar (0.18) 5.24

Cacao Theobroma cacao 2n = 2x = 20 

(430)

Côte d’Ivoire (1.22) Indonesia (0.80) Ghana (0.66) Nigeria (0.37) 4.08

pigeonpea Cajanus cajan 2n = 2x = 22                       
(858)

India (2.27) Myanmar (0.76) Malawi (0.20) Uganda (0.09) 3.48

aSource: http://faostat.fao.org/site/567/default.aspx#ancor (accessed 12 October 2011).

A critical analysis of this table highlights the importance of orphan crops in developing countries. For instance, although rice, maize and wheat remain the leading crops of the world, crops 
such as cassava are the biggest crops in the developing countries. In countries like Benin, Ghana, Malawi, Nigeria and Uganda, cassava is the most widely produced crop, whereas it is the 
second biggest crop grown in Côte d’Ivoire, Kenya and India. The case is similar for many other so-called orphan crops in developing countries. Furthermore, molecular breeding is almost an 
integral part of crop improvement for the world’s major crops, whereas, molecular breeding has either just started or yet to be initiated in the main orphan crops.  It is therefore imperative to 
deploy molecular breeding in crop improvement programs for these orphan crops. 
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To the Editor:
Auxotrophic markers—mutations in genes 
encoding enzymes in pathways for the 
biosynthesis of metabolic building blocks, 
such as amino acids or nucleotides—are 
used as selection markers in most yeast 
genetics and genomics experiments1–3. 
The nutritional deficiency caused by the 
mutation (auxotrophy) can be compensated 
by supplying the required nutrient in the 
growth medium. This compensation, 
however, is not necessarily quantitative 
because such mutations influence several 
physiological parameters and may act in 
combination2,4,5. The construction of a 
prototrophic derivative of the parent strain 
of the widely used genome-scale yeast 
deletion collection1 has confirmed the 
need to remove auxotrophic markers to 
reduce bias in physiological and metabolic 
studies2. Moreover, flux balance analyses 
using a genome-wide metabolic model 
(Yeast 5)6 indicate that the activity status of 
some 200–300 reactions changes between 
different auxotrophic strains and the 
wild type. To alleviate this bias, we have 
constructed a version of the haploid deletant 
collection restoring prototrophy in the 
genetic background and thus preventing any 
influence of auxotrophy on the phenotype 
of a given gene deletion. This new deletant 
library is based on the popular S228c 
(MATa) knock-out collection1, and
facilitates the exploitation of prototrophic 
yeast in both functional genomics and 
quantitative systems biology.

We assessed the physiological effect 
of auxotrophy by monitoring the growth 
of 16 yeast strains carrying all possible 
combinations of the markers (histidine 
(his3D; his3D306-495, his3D1), leucine 
(leu2D), methionine (met15D) and uracil 
(ura3D)) used in the MATa version of the 
yeast deletion collection1. All markers and 

their combinations affected yeast growth, 
but without altering the adenylate (ATP, 
ADP and AMP) energy charge (Fig. 1a). 
As the most critical phenotypic quantity, 
the maximum specific growth rate (μmax) 
varied between 0.125 ± 0.003 (s.d.) h–1 
(leu2D) and 0.207 ± 0.007 h–1 (ura3Δ 
his3Δ), rendering quantitative comparisons 
among these strains impossible (Fig. 1a 
and Supplementary Table 1). These growth 
differences could not be explained by the 
different medium supplementations for the 
following reasons: first, prototrophic yeast 
exhibited a different and substantially less 
diverse growth pattern in the 16 minimal 
media (Fig. 1b, left; medium recipes are 
given in the Supplementary Methods); 
and second, growth differences were 
altered, but not abrogated, when other 
proteogenic amino acids were included 
as well (synthetic complete medium; 
Fig. 1c). On both types of medium, we 
observed complex (epistatic) interactions 
among all auxotrophic mutations. For 
instance, restoring MET15 had a negative 
effect on μmax in leu2Dura3Dhis3Dmet15D 
(0.185 ± 0.004 h–1 → 0.164 ± 0.003 h–1) 
or leu2Dura3Dmet15D (0.162 ± 0.005 h–1 
→ 0.149 ± 0.001 h–1) but, unexpectedly, 
promoted growth in leu2Dhis3Dmet15D 
(0.136 ± 0.006 h–1 → 0.173 ± 0.009 h–1; Fig. 
1a); restoring LEU2 had a positive effect 
in leu2Dura3Dhis3D (0.164 ± 0.003 h–1 → 
0.185 ± 0.006 h–1) or leu2Dhis3Dmet15D 
(0.136 ± 0.006 h–1 → 0.161 ± 0.004 h–1) but 
not in leu2Dura3Dhis3Dmet15D (0.185 ± 
0.004 h–1 → 0.186 ± 0.007 h–1; Fig. 1a and 
Supplementary Table 1). Thus, although 
blocking different pathways, all markers 
affect one another, indicating that they have 
a wide-ranging and combinatorial influence 
on the metabolic network.

In batch culture experiments, further 
problems arise from the unequal 
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